首页 | 本学科首页   官方微博 | 高级检索  
     

基于混沌理论的再热汽温神经网络模型
引用本文:张韵辉,赵宇红,吕震中. 基于混沌理论的再热汽温神经网络模型[J]. 自动化仪表, 2006, 27(2): 6-10
作者姓名:张韵辉  赵宇红  吕震中
作者单位:1. 东南大学动力系,南京,210096
2. 南华大学电气工程学院,衡阳,421001
摘    要:在利用混沌理论揭示火电机组再热汽温混沌动力学特性的基础上,构建了再热汽温神经网络预测模型。该模型利用混沌特性处理输入样本并确定神经网络的结构,用神经网络映射混沌相空间的相点演化的非线性关系,采用改进型遗传算法对神经网络模型进行参数辨识。仿真结果表明:该模型精度较高,收敛速度快,为实际生产过程中再热汽温的预测提供了一种新的思路和方法。

关 键 词:混沌  改进型遗传算法  神经网络  再热汽温
收稿时间:2005-09-16
修稿时间:2005-09-16

The Model of Neural Network Based on Chaos Theory for Reheated Steam Temperature
Zhang Yunhui,Zhao Yuhong,Lü Zhenzhong. The Model of Neural Network Based on Chaos Theory for Reheated Steam Temperature[J]. Process Automation Instrumentation, 2006, 27(2): 6-10
Authors:Zhang Yunhui  Zhao Yuhong  Lü Zhenzhong
Abstract:Chaos theory is adopted to reveal the chaotic dynamics performance of reheated steam temperature in fossil fired power station, a new predictive model of neural network for reheated steam temperature is established based on the chaos theory. In the model, chaotic performance is used to deal with input samples and determine structure of neural network, the mapping with neural network is used to describe non-linearity of point evolution of chaotic phase space, and parameter identification is done by improved genetic algorithm. Simulation results show that the model features higher precision and faster convergence speed. It also offers a new thought and method for prediction of reheated steam temperature during actual production.
Keywords:Chaos Improved genetic algorithm Neural network Temperature of reheated steam
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号