首页 | 本学科首页   官方微博 | 高级检索  
     


Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia
Authors:PR Stauffer  F Rossetto  M Leoncini  GB Gentilli
Affiliation:Department of Radiation Oncology, University of California, San Francisco 94143-0226, USA. stauffer@radonc17.ucsf.edu
Abstract:The finite difference time domain (FDTD) method has been used to calculate electromagnetic radiation patterns from 915-MHz dual concentric conductor (DCC) microwave antennas that are constructed from thin and flexible printed circuit board (PCB) materials. Radiated field distributions are calculated in homogeneous lossy muscle tissue loads located under variable thickness coupling bolus layers. This effort extends the results of previous investigations to consider more realistic applicator configurations with smaller 2-cm-square apertures and different coupling bolus materials and thicknesses, as well as various spacings of multiple-element arrays. Results are given for practical applicator designs with microstrip feedlines etched on the backside of the PCB antenna array instead of previously tested bulky coaxial-cable feedline connections to each radiating aperture. The results demonstrate that for an optimum coupling bolus thickness of 2.5-5 mm, the thin, flexible, and lightweight DCC antennas produce effective heating to the periphery of each aperture to a depth of approximately 1 cm, and may be combined into arrays for uniform heating of large area superficial tissue regions with the 50% power deposition contour conforming closely to the outer perimeter of the array.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号