首页 | 本学科首页   官方微博 | 高级检索  
     


Gold supported on Mg, Al and Cu containing mixed oxides: Relation between surface properties and behavior in catalytic aerobic oxidation of 1-phenylethanol
Authors:Peter Haider   Jan-Dierk Grunwaldt  Alfons Baiker  
Affiliation:aInstitute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Hönggerberg, HCI, CH-8093 Zürich, Switzerland
Abstract:Aerobic oxidation of 1-phenylethanol was investigated over Au deposited on flame-derived Mg–Al and Cu–Mg–Al mixed oxides with different metal ratios. A maximum in acetophenone (1-phenyl-ethanone) yield was observed for catalysts based on both Cu–Mg–Al and Mg–Al mixed oxides depending on their composition. Special attention was given to the elucidation of the role of surface basicity and the influence of the preparation route on the particle size of Au. Adsorption of CO2 from the liquid phase combined with in situ ATR-IR and modulation excitation spectroscopy (MES) was applied to investigate differences in the surface properties of the mixed oxides as a function of the composition. Monodentate and bidentate carbonates were identified, the former being dominant on supports with high Cu contents. In order to obtain a rough quantification of the surface basicity, the retroaldolisation of 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol, DAA) was chosen as a probe reaction indicating that a ratio Mg/Al = 3 results in optimal surface basicity. Moreover, the addition of Cu only lead to a partial loss in retroaldolisation activity, indicating that also the copper sites form basic centers on the surface, however, slightly weaker ones than the corresponding Mg sites. The preparation routes applied (adsorption of colloid, deposition precipitation, and impregnation) lead to different gold particle sizes characterized by mean diameters of ≈2, ≈9 and ≈30 nm, respectively. Catalytic tests using Au/Cu1Mg2Al1Ox catalysts with different mean gold particle size hint towards a particle size dependence of the aerobic oxidation of 1-phenylethanol, showing higher activity for the catalyst containing gold particles of ca. 9 nm compared to those with 2 and 30 nm particles, respectively.
Keywords:Gold   Aerobic oxidation   1-Phenylethanol   Surface basicity   CO2-adsorption   Retroaldolisation   ATR-IR   Mg–  Al–  Cu mixed oxides   Surface carbonates
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号