首页 | 本学科首页   官方微博 | 高级检索  
     

气-液-固三相磨粒流光整加工及其工艺参数优化
引用本文:计时鸣,黄希欢,谭大鹏,谭云峰. 气-液-固三相磨粒流光整加工及其工艺参数优化[J]. 光学精密工程, 2016, 24(4): 855-864. DOI: 10.3788/OPE.20162404.0855
作者姓名:计时鸣  黄希欢  谭大鹏  谭云峰
作者单位:浙江工业大学 特种装备制造与先进加工技术教育部重点实验室, 浙江 杭州 310032
基金项目:国家自然科学基金面上项目(51575494),浙江省自然科学基金重点项目(LZ14E050001),浙江省大学生科技创新活动计划(新苗人才计划)项目(2015R403066)
摘    要:考虑用流体抛光法加工大尺度工件存在效率低下问题,本文提出了一种气-液-固三相磨粒流抛光方法。该方法在约束流场中引入微纳米气泡,利用气泡在溃灭时释放的能量加速驱动磨粒运动,从而有效提升抛光效率。实验显示:在加工过程中,离心泵的发热会导致流体黏度下降,进而影响工件近壁面的湍动能和动压力的大小及分布,而加工工件近壁面的湍动能和动压力会对表面纹理的均匀性和材料的去除效率有重要影响。针对上述实验结果,文中基于对磨粒流抛光机理的研究,提出一种通过改变入口流速来补偿温升带来的湍动能和动压力变化的方法,实验求得了抛光流体温度从20℃到60℃之间的9个均等点对应的最优入口流速值。实验表明,相对未加入气泡时,该抛光方法的加工效率得到提高,而调速补偿明显提升了工件表面加工质量。

关 键 词:流体抛光  气-液-固三相磨粒流抛光  微纳米气泡  湍动能  动压力  参数优化
收稿时间:2015-09-19

Gas-liquid-solid abrasive flow polishing and its process parameter optimization
JI Shi-Ming,HUANG Xi-Huan,TAN Da-Peng,TAN Yun-Feng. Gas-liquid-solid abrasive flow polishing and its process parameter optimization[J]. Optics and Precision Engineering, 2016, 24(4): 855-864. DOI: 10.3788/OPE.20162404.0855
Authors:JI Shi-Ming  HUANG Xi-Huan  TAN Da-Peng  TAN Yun-Feng
Affiliation:Key Laboratory of Special Purpose Equipment and Advanced Processing Technology of the Ministry of Education, Zhejiang University of Technology, Hangzhou 310032, China
Abstract:A gas-liquid-solid three-phase abrasive flow finishing method was proposed to improve the efficiency of fluid-based finishing for large-scale workpieces. By introducing micro-nano bubbles into a restrain flow field, the method utilized the energy released by the bubble collapsing to accelerate the motions of abrasive particles and to improve the finishing efficiency. During the finishing process, the fluid viscosity might decline owing to the centrifugal pump heat, and it could influence the amplitudes and profiles of turbulent kinetic energy and dynamic pressure in the near-wall region. Furthermore, the turbulent kinetic energy and dynamic pressure of near-wall region have a major impact on the uniformity of the surface texture and the removal efficiency. On the basis of the results mentioned above, a method to change the inlet velocity to compensate the temperature rising brought by the turbulent kinetic energy and dynamic pressure changes was proposed, and the optimal inlet velocity of finishing fluid temperature from 20℃ to 60℃ between the corresponding nine equal points was obtained. Experimental results show that the gas-liquid-solid three-phase abrasive flow finishing method improves the efficiency respect to traditional methods without the bubble processing, and the inlet velocity compensation improves the quality of workpiece surfaces significantly.
Keywords:fluid-assisted polishing  gas-liquid-solid three-phase abrasive flow finishing  micro-nano bubble  turbulent kinetic energy  dynamic pressure  parameter optimization
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光学精密工程》浏览原始摘要信息
点击此处可从《光学精密工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号