首页 | 本学科首页   官方微博 | 高级检索  
     


Centrifugal atomization of stainless-steel rotating rods melted by a high-power LASER beam
Affiliation:1. Laboratoire ICB – UMR 6303 CNRS/UBFC, 9 Avenue Alain Savary, 21000 Dijon, France
Abstract:316L grade stainless steel powders were produced by centrifugal atomization during the melting of a rotating rod heated by a high-power LASER beam. The feasibility has been demonstrated by atomizing a range of stainless steel rods. The atomization process has been observed via high-speed imaging and fragmentation regimes have been identified according to a literature review on the rotating electrode process (REP). Results were compared with literature data and an existing prediction model for such a process. High-speed observation can monitor the present process and it is shown that a solidified layer of metal is formed at the edge of the rod during the process inducing metal flake ejection due to the centrifugal stresses. Effects of incident LASER beam power density, ejection speed and oxygen content of the surrounding atmosphere on the particle size distribution and the sample surface have been studied and compared with literature data on classical REP atomizers. The study focuses on the production of irregular particles during the atomization process and highlights the influence of the oxygen content in the surrounding atmosphere on the fragmentation regime and the resulting particle size distribution.
Keywords:LASER  Atomization  Particle size  REP  High-speed imaging
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号