首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains (invited)
Authors:Liu Huiwen  Bhushan Bharat  Eck W  Kueller A
Affiliation:Nanotribology Laboratory for Information Storage and MEMS/NEMS, The Ohio State University, Columbus 43210-1107, USA.
Abstract:Understanding the relationships between molecular structure and nanotribological performance of self-assembled monolayers (SAMs) are quite important for molecular tailoring for efficient lubrication. For this purpose, SAMs, having alkyl and biphenyl spacer chains with different surface terminal groups (-CH3, -COOH, and -OH), and head groups (-SH and -OH), were prepared. The influence of spacer chains, surface terminal groups, and head groups on adhesion, friction and wear properties were investigated by contact mode atomic force microscopy (AFM). The relative stiffness of SAMs was determined by force modulation mode AFM and indentation experiments using load-displacement curves. The friction properties of SAMs are explained using a molecular spring model in which local stiffness governs the friction properties. Micropatterned SAMs specimen were fabricated and studied to verify the molecular spring model. The influence of relative humidity, temperature and velocity on adhesion and friction was studied. The failure mechanisms of SAMs and substrates were investigated by wear and continuous microscratch AFM technique. Based on these studies, the adhesion, friction and wear mechanisms of SAMs at molecular scale are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号