首页 | 本学科首页   官方微博 | 高级检索  
     


Advancement in the Hydrogen Absorbing and Releasing Kinetics of MgH2 by Mixing with Small Percentages of Zn(BH4)2 and Ni
Authors:Young Jun Kwak  Hye Ryoung Park  Myoung Youp Song
Affiliation:1.Department of Materials Engineering, Graduate School,Chonbuk National University,Jeonju,Republic of Korea;2.School of Chemical Engineering,Chonnam National University,Gwangju,Republic of Korea;3.Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute,Chonbuk National University,Jeonju,Republic of Korea
Abstract:Zn(BH4)2 made in our former investigation and Ni were mixed with MgH2 to promote the hydrogen absorption and release features of Mg. A 96 w/o MgH2 + 2 w/o Ni + 2 w/o Zn(BH4)2 sample [named MgH2–4NZ] was prepared by milling in a planetary ball mill in a hydrogen atmosphere. The proportion of the additive was small (4 w/o) in order to increase hydrogen absorbing and releasing rates without majorly sacrificing the hydrogen-storage capacity. The hydrogen absorption and release features of the MgH2–4NZ were inspected in detail and compared with those of 99 w/o MgH2 + 1 w/o Zn(BH4)2 [named MgH2–1Z] and 95 w/o MgH2 + 2.5 w/o Ni + 2.5 w/o Zn(BH4)2 [named MgH2–5NZ] samples. The activation of the MgH2–4NZ was not required. The MgH2–4NZ had a useful hydrogen-storage capacity (the quantity of hydrogen absorbed after 60 min) of about 5.5 w/o at the first cycle. At the first cycle, the MgH2–4NZ absorbed 3.84 w/o hydrogen after 5 min and 5.47 w/o hydrogen after 60 min at 593 K in 12 bar hydrogen. The MgH2–4NZ had a higher releasing rate, larger amounts of hydrogen absorbed and released after 60 min, and a better cycling capability than the MgH2–1Z. Staying of Ni (as Mg2Ni) and a larger amount of Zn among particles is believed to have led to the better cycling capability of the MgH2–4NZ.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号