首页 | 本学科首页   官方微博 | 高级检索  
     


A new 4H-SiC lateral merged double Schottky (LMDS) rectifier withexcellent forward and reverse characteristics
Authors:Singh   Y. Kumar   M.J.
Affiliation:Centre for Appl. Res. in Electron., Indian Inst. of Technol., New Delhi;
Abstract:The novel characteristics of a new Schottky rectifier structure, known as the lateral merged double Schottky (LMDS) rectifier, on 4H-SiC are explored theoretically and compared with those of the compatible conventional 4H-SiC Schottky rectifiers. The anode of the proposed lateral device utilizes the trenches filled with a high barrier Schottky (HBS) metal to pinch off a low barrier Schottky (LBS) contact during reverse bids. Numerical simulation of any such SiC structure is complicated by the fact that the thermionic emission theory predicts the reverse leakage current to be orders of magnitude smaller than the measured data. We, therefore, first propose a simple empirical model for barrier height lowering to accurately estimate the reverse leakage current in a SiC Schottky contact. The accuracy of the empirical model is verified by comparing the simulated reverse leakage current with the reported experimental results on different SiC Schottky structures. Using the proposed empirical model, the two-dimensional (2-D) numerical simulations reveal that the new LMDS rectifier demonstrates about three orders of magnitude reduction in the reverse leakage current and two times higher reverse breakdown voltage when compared to the conventional lateral low barrier Schottky (LLBS) rectifier while keeping the forward voltage drop comparable to that of the conventional LLBS rectifier
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号