首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络的改进多变量预测控制
引用本文:杨鹏,刘品杰,张燕,李永富. 基于RBF神经网络的改进多变量预测控制[J]. 控制工程, 2009, 16(1)
作者姓名:杨鹏  刘品杰  张燕  李永富
作者单位:河北工业大学,自动化系,天津,300130;河北工业大学,自动化系,天津,300130;河北工业大学,自动化系,天津,300130;河北工业大学,自动化系,天津,300130
摘    要:针对一类多输入多输出非线性被控对象,提出一种基于单神经网络的预测控制算法,应用RBF神经网络对非线性系统进行辨识,并计算被控系统多步预测输出值.该方法通过对传统预测目标函数加以改进,给出一种带微分项的多步预测目标函数,通过迭代寻优实时给出优化控制量.该方法实时性好,简化了传统预测控制算法,加快了滚动寻优的速度,有效地抑制了系统惯性和输入时滞所带来的超调,减小了模型误差、干扰及不确定性对控制器的影响.仿真及应用结果表明了该方法的有效性.

关 键 词:RBF网络  预测控制  多变量系统  非线性系统

Improved Multivariable Predictive Control Based on RBF Networks
YANG Peng,LIU Pin-jie,ZHANG Yan,LI Yong-fu. Improved Multivariable Predictive Control Based on RBF Networks[J]. Control Engineering of China, 2009, 16(1)
Authors:YANG Peng  LIU Pin-jie  ZHANG Yan  LI Yong-fu
Affiliation:Department of Automation;Hebei University of Technology;Tianjin 300130;China
Abstract:A predictive control algorithm based on single neural network is presented for a kind of MIMO nonlinear systems.RBF network is used to calculate the multi-step-ahead predictive outputs.To improve the traditional objective function,a multi-step differential predictive cost function is constructed and the optimum objective values are calculated by using the iterating algorithm.This strategy can accelerate the process of receding horizon optimization and reduce the influence of model error,disturbance and unce...
Keywords:RBF network  predictive control  multivariable system  nonlinear system  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号