摘 要: | 针对激光雷达SLAM(Simultaneous Localization and Mapping)算法定位精确度不高且鲁棒性较差的问题,文中提出了一种融合IMU(Inertial Measurement Unit)数据到三维点云配准过程的SLAM方法。在LeGO-LOAM(Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain)算法的研究基础上,在地面点提取环节引入IMU数据,将点云映射到世界坐标系下,减小载体抖动对地面点提取的影响。利用IMU输出信息消除点云由于载体运动产生的畸变,增强算法的鲁棒性。使用三点聚类法对一帧点云进行聚类分析,减少杂点的干扰,加快点云配准过程,提高了算法定位精度;同时引入闭环检测,减小匹配过程中的累积误差,得到全局最优解。结果表明,在大型户外干扰较多的环境中,改进SLAM算法减少了求解得到的轨迹波动,提升了点云配准精度,增强了算法的鲁棒性。
|