首页 | 本学科首页   官方微博 | 高级检索  
     

原位合成Si/(SiO+Ag)复合负极材料及电化学性能
引用本文:王 帅,唐 梦,蔡振飞,曹 瑞,马扬洲,宋广生.原位合成Si/(SiO+Ag)复合负极材料及电化学性能[J].精细化工,2024,41(1).
作者姓名:王 帅  唐 梦  蔡振飞  曹 瑞  马扬洲  宋广生
作者单位:安徽工业大学材料科学与工程学,安徽工业大学材料科学与工程学,安徽工业大学材料科学与工程学,安徽工业大学材料科学与工程学,安徽工业大学材料科学与工程学,安徽工业大学材料科学与工程学
基金项目:国家自然科学基金(52207246)、安徽省教育委员会自然科学研究项目(KJ2020A0263, YJS20210336)先进金属材料绿色制造与表面技术重点实验室(GFST2022ZR02, GFST2021KF01)、国家级外国专家引进计划项目(G20190219004)和校企合作项目(RD182000582019H3-72020H3-8)资助
摘    要:开发一种机械化学原位固相反应合成硅基复合材料,该方法通过球磨过量微米Si和Ag2O,使其在球磨破碎过程中原位形成SiO和Ag颗粒并附着在基体Si上,简记Si/(SiO+Ag),并以沥青为碳源采用高温煅烧制备碳包覆硅基复合材料Si/(SiO+Ag)-C。这两种复合材料都展现出良好的倍率性能,在低电流密度(0.12 A/g)下分别表现出1422和1039 mA h/g的可逆比容量,而在高电流密度(2.4 A/g)下仍能获得672和393 mA h/g的可逆比容量;当电流密度再次恢复到0.12 A/g时,可逆容量可恢复到1329 和961 mA h/g。相比之下,碳包覆硅基复合材料表现出更好的循环稳定性,经80次循环后容量仍然稳定在943 mA h/g以上。这种突出的倍率性能归因于硅基颗粒细化及原位形成纳米Ag颗粒导电特性,而循环稳定性的提高与原位形成SiO和包覆碳构成的双相缓冲结构有关。

关 键 词:锂离子电池  复合材料  硅负极材料  固相反应  机械化学
收稿时间:2023/4/28 0:00:00
修稿时间:2023/6/15 0:00:00

In-situ mechanochemical synthesis of Si/ (SiO + Ag)composite anodes and electrochemical property evaluation
WANG Shuai,TANG Meng,CAI Zhenfei,CAO Rui,MA Yangzhou and SONG Guangsheng.In-situ mechanochemical synthesis of Si/ (SiO + Ag)composite anodes and electrochemical property evaluation[J].Fine Chemicals,2024,41(1).
Authors:WANG Shuai  TANG Meng  CAI Zhenfei  CAO Rui  MA Yangzhou and SONG Guangsheng
Affiliation:School of Materials Science and Engineering,Anhui University of Technology,Maanshan,School of Materials Science and Engineering,Anhui University of Technology,Maanshan,School of Materials Science and Engineering,Anhui University of Technology,Maanshan,School of Materials Science and Engineering,Anhui University of Technology,Maanshan,School of Materials Science and Engineering,Anhui University of Technology,Maanshan,School of Materials Science and Engineering,Anhui University of Technology,Maanshan
Abstract:A mechanochemical in-situ solid-state reaction synthesis method for Si-based composites was developed. This method involves milling excess micron-Si and Ag2O to form SiO and Ag particles in-situ and adhere to the matrix Si during the ball-milling crushing process (abbreviated as Si/( SiO + Ag )). Carbon-coated Si-based composites Si/( SiO + Ag ) - C were prepared using asphalt as a carbon source by high-temperature calcination. Both of these composites exhibit excellent rate performance, exhibiting reversible specific capacities of 1422 and 1039 mA h/g at low current density (0.12 A/g), respectively, while 672 and 393 mA h/g can still be obtained at high current density (2.4 A/g); When the current density is restored to 0.12 A/g again, the reversible capacity can be restored to 1329 and 961 mA h/g. In contrast, Si/(SiO + Ag ) - C exhibit better cycle stability, and their capacity remains stable above 943mA h/g after 80 cycles. This outstanding rate performance is attributed to the refinement of Si-based particles and the electrical conductivity of in situ-formed nano-Ag particles, while the improvement in cycle stability is related to the dual-phase buffer structure composed of in situ-formed SiO and coated carbon.
Keywords:Lithium-ion battery  composite materials  Silicon anode  solid state reaction  mechanochemistry
点击此处可从《精细化工》浏览原始摘要信息
点击此处可从《精细化工》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号