摘 要: | 当前,医院信息系统(HIS)已成为医院信息化建设的重要内容,但HIS与财务数据库的接入仍然采用传统的方式,导致财务重要数据存在一定的安全隐患。为了有效消除用户异常行为对医院财务数据库所构成的安全隐患,设计一种财务数据库异常检测技术。通过调取财务数据库运行日志中的用户查询内容及相应结果,采用k-means聚类算法进行用户分组,采用Navie Bayes算法构建异常检测模型。应用测试结果表明,与传统的用户行为轮廓算法相比,所提出的算法准确率提高了7.06个百分点,综合F1值提高了3.33个百分点,此外,在大幅度缩减计算量的基础上模型训练时间缩短了81%,极大地提高了财务数据的安全性。
|