首页 | 本学科首页   官方微博 | 高级检索  
     

基于词注意力卷积神经网络模型的情感分析研究
引用本文:王盛玉,曾碧卿,商齐,韩旭丽. 基于词注意力卷积神经网络模型的情感分析研究[J]. 中文信息学报, 2018, 32(9): 123-131
作者姓名:王盛玉  曾碧卿  商齐  韩旭丽
作者单位:1.华南师范大学 计算机学院,广东 广州 510631;
2.华南师范大学 软件学院,广东 佛山 528225
基金项目:国家自然科学基金(61503143);华南师范大学研究生创新计划(2016lkxm59)
摘    要:情感分类任务需要捕获文本中的情感特征,利用重要的局部特征构建文本的特征表示。卷积神经网络(convolutional neural networks,CNN)已经被证明拥有出色的特征学习能力,但是该模型无法判别输入文本中特征词与情感的相关性,卷积层缺乏对单一词特征的提取。基于目前运用非常成功的注意力模型,该文提出一种基于词注意力的卷积神经网络模型(word attention-based convolutional neural networks,WACNN)。相比于卷积神经网络,该模型以篇章的文本信息作为输入,首先在词嵌入层之后增加注意力机制层,获取重要的局部特征词,使模型有选择地进行特征提取;然后在卷积层中增加大小为1的卷积核,提取单一词的特征;最后该方法对输入文本进行适当的文本填充,保证每个词都存在上下文信息,使模型有效提取到每个词的n-grams局部特征,避免卷积处理过程中局部信息的丢失。该模型在MR5K和CR数据集上进行验证,较普通卷积神经网络和传统机器学习方法,在准确率上分别取得0.5%和2%的提升。

关 键 词:卷积神经网络  注意力模型  情感分类  

Word Attention-based Convolutional Neural Networks for Sentiment Analysis
WANG Shengyu,ZENG Biqing,SHANG Qi,HAN Xuli. Word Attention-based Convolutional Neural Networks for Sentiment Analysis[J]. Journal of Chinese Information Processing, 2018, 32(9): 123-131
Authors:WANG Shengyu  ZENG Biqing  SHANG Qi  HAN Xuli
Affiliation:1.School of Computer Science, South China Normal University, Guangzhou, Guangdong 510631, China;
2.School of Software, South China Normal University, Foshan, Guangdong 528225, China
Abstract:Sentiment classification task needs to capture the sentiment features from document and then combines them to construct the document representation. In this paper,we propose the model of Word Attention-based Convolution Neural Networks(WACNN). Compared with CNN,our model takes the document information as input. In detail,we put a word attention layer after the word embedding layer and before the CNN layer. Attention layer enables our model to focus on certain part of the input document and learn weights of each word. We also add a convolve filter with size of 1 in the convolution layer to extract the features of single word. To ensure the existance of context for each word,we pad the input of the convolution layer. This method can be used to extract the n-grams local features of each word effectively,avoiding information loss caused by convolution processing. Compared with traditional CNN and machine learning methods,the accuracy is improved by 0.5% and 2% on MR5K and CR datasets,respectively.
Keywords:convolutional neural networks    attention model    sentiment classification  
点击此处可从《中文信息学报》浏览原始摘要信息
点击此处可从《中文信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号