首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
面向军事领域的中文分词技术研究
作者姓名:
李健龙
王盼卿
韩琪宇
摘 要:
在分词模型跨领域分词时,其性能会有明显的下降。由于标注军队遗留系统开发文档语料的工作比较复杂,本文提出n-gram与词典相结合的中文分词领域自适应方法。该方法通过提取目标语料的n-gram特征训练适应特征领域的分词模型,然后利用领域词典对分词结果进行逆向最大匹配的校正。实验结果表明,在军队遗留系统相关文档语料上,该方法训练的分词模型将F值提高了12.4%。
关 键 词:
条件随机场
n-gram特征
领域词典
收稿时间:
2018-11-23
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号