首页 | 本学科首页   官方微博 | 高级检索  
     

多尺度体积压裂支撑剂导流能力实验研究及应用
引用本文:刘建坤,谢勃勃,吴春方,蒋廷学,眭世元,沈子齐.多尺度体积压裂支撑剂导流能力实验研究及应用[J].钻井液与完井液,2019,36(5):646-653.
作者姓名:刘建坤  谢勃勃  吴春方  蒋廷学  眭世元  沈子齐
作者单位:1. 页岩油气富集机理与有效开发国家重点实验室, 北京 100101;
基金项目:国家自然科学基金"页岩油气高效开发基础理论"(51490653)和中国石化科技攻关项目"鄂南致密油藏两级裂缝高导流复合压裂技术研究"(P17005-5)联合资助
摘    要:裂缝有效导流能力是评价压裂施工效果的主要参数,也是影响压裂增产效果的最重要因素之一。设计了多尺度裂缝导流能力实验方法,采用单一粒径和组合粒径的铺置方式,研究了闭合压力、粒径组合方式、铺砂浓度及应力循化加载条等因素对多尺度主裂缝及分支缝内支撑剂的导流能力变化的影响。实验研究结果表明:随着闭合压力增加,大粒径支撑剂与小粒径支撑剂的导流能力差距逐渐变小,主裂缝及分支缝内支撑剂导流能力逐渐降低,而且这种降低趋势存在明显的转折点。组合粒径铺置条件下,主裂缝及分支缝内支撑剂组合均存在最优的组合方式。主裂缝及分支缝内支撑剂铺置砂浓度越高,导流能力也越高;随着闭合压力增大,高浓度铺砂与低浓度铺砂条件下的导流能力差距逐渐变小。应力加载破坏对支撑剂导流能力的影响是不可逆的。现场应用表明,在满足压裂工艺要求前提下,通过支撑剂组合方式及加砂方式的合理优化,可有效提高裂缝导流能力及压后产量。研究结果为体积压裂方案优化及现场施工提供基础数据依据。 

关 键 词:体积压裂    支撑剂    导流能力    主裂缝    分支缝    物理模拟实验
收稿时间:2019-05-07

Experimental study and application for the conductivity of proppant in multi-scale volume fracturing
LIU Jiankun,XIE Bobo,WU Chunfang,JIANG Tingxue,SUI Shiyuan,SHEN Ziqi.Experimental study and application for the conductivity of proppant in multi-scale volume fracturing[J].Drilling Fluid & Completion Fluid,2019,36(5):646-653.
Authors:LIU Jiankun  XIE Bobo  WU Chunfang  JIANG Tingxue  SUI Shiyuan  SHEN Ziqi
Affiliation:1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101;2. Sinopec Research Institute of Petroleum Engineering, Beijing 100101;3. China University of Petroleum(Beijing), Beijing 102249
Abstract:The effective conductivity of fracture is the main parameter for evaluating the effect of fracturing construction, and it is also one of the most important factors affecting the effect of fracturing. We designed a multi-scale fracture conductivity experimental method, and used a method of single particle size and combined particle size placement to studied the effects of factors such as closure pressure, particle size combination, sanding concentration and stress cycling on the proppant conductivity in main fracture and branching fracture.The experimental results show that:As the closing pressure increases, the difference in the conductivity of the large-size proppant and the small-sized proppant gradually decreases, and the conductivity of the proppant in the main fracture and the branch fracture gradually decreases, and this reduction trend has an obvious turning point.Under the combined particle size placement conditions, there is an optimal proppant combination both in the main fracture and the branch fracture.The higher the sediment concentration of the proppant in the main fracture and the branch fracture, the higher the conductivity will be;As the closing pressure increases, the difference of the conductivity between the high-concentration sanding and the low-concentration sanding becomes smaller.The effect of stress cycling on the proppant conductivity is irreversible.The field application shows that under the premise of meeting the fracturing process requirements, it can effectively improve the fracture conductivity and the post-pressing output by usingthe proppant combination method and the reasonable optimization of the sand adding method.This research provide the basis for the optimization of volume fracturing scheme and on-site construction.
Keywords:volumetric fracturing  proppant  diversion capacity  main fracture  branch fracture  physical simulation experiment  
本文献已被 CNKI 等数据库收录!
点击此处可从《钻井液与完井液》浏览原始摘要信息
点击此处可从《钻井液与完井液》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号