首页 | 本学科首页   官方微博 | 高级检索  
     

基于Gabor滤波的语音识别鲁棒性研究
引用本文:缑新科,,徐高鹏. 基于Gabor滤波的语音识别鲁棒性研究[J]. 计算机与现代化, 2018, 0(5): 20. DOI: 10.3969/j.issn.1006-2475.2018.05.005
作者姓名:缑新科    徐高鹏
摘    要:为了提高语音识别系统的鲁棒性,提出一种基于GBFB(spectro-temporal Gabor filter bank)的声学特征提取方法,并通过分块PCA算法对高维的GBFB特征进行降维处理,最后在多个相同噪音环境对GBFB特征以及常用的GFCC,MFCC,LPCC等特征进行抗噪性能对比,与GFCC相比GBFB特征的识别率提高了5.35%,与MFCC特征相比提升了7.05%,比LPCC特征识别的基线低9个分贝。实验结果表明,在噪音环境下与传统的GFCC、MFCC以及LPCC等特征相比GBFB特征有更优越的鲁棒性。

关 键 词:语音识别   鲁棒性   Gabor滤波   特征提取   GBFB特征  
收稿时间:2018-06-13

Research on Speech Recognition Robustness Based on Gabor Filtering
GOU Xin-ke,,XU Gao-peng. Research on Speech Recognition Robustness Based on Gabor Filtering[J]. Computer and Modernization, 2018, 0(5): 20. DOI: 10.3969/j.issn.1006-2475.2018.05.005
Authors:GOU Xin-ke    XU Gao-peng
Abstract: In order to improve the robustness of speech recognition system, a method of extracting the acoustic features based on GBFB (spectro-temporal Gabor filter bank) is proposed, and the dimension of the GBFB is reduced by the block PCA algorithm. Finally, the feature of GBFB are compared with the feature of GFCC, MFCC and LPCC in different noise environments. The recognition rate of GBFB features is 5.35% better than GFCC features, the recognition rate of GBFB features is 7.05% better than MFCC features. Moreover, GBFB features are 9 dB lower than the LPCC recognition base. The experimental results show that the GBFB features exhibit better robustness than the traditional features of GFCC, MFCC and LPCC in the noisy environment.
Keywords:speech recognition  robustness  Gabor filter  features extraction  GBFB features  
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号