首页 | 本学科首页   官方微博 | 高级检索  
     


The method of surface PEGylation influences leukocyte adhesion and activation
Authors:Z Ademovic  B Holst  R A Kahn  I Jørring  T Brevig  J Wei  X Hou  B Winter-Jensen  P Kingshott
Affiliation:1. Danish Polymer Centre, Ris? National Laboratory, Frederiksborgvej 399, 4000, Roskilde, Denmark
2. Bioneer A/S, Mammalian Cell Biology, Kogle Alle 2, 2970, H?rsholm, Denmark
3. Nuclear Research Department, Ris? National Laboratory, Frederiksborgvej 399, 4000, Roskilde, Denmark
Abstract:The influence of different surface modifications with poly(ethyleneglycol) (PEG) layers on the adsorption of fibrinogen and the adhesion and activation of macrophage-like human leukocytes was investigated. Poly(ethylene terephthalate) (PET) was modified using pulsed AC plasma polymerization with two types of starting monomers to generate: 1) a reactive acid surface using maleic anhydride (MAH) as monomer, and 2) a PEG-like surface using diethyleneglycol methyl vinyl ether (DEGVE) as monomer. The MAH surface was used as a reactive platform to graft linear chains of non-fouling mPEG via an intermediate layer of poly(ethyleneimine) (PEI) under lower critical solution temperature (LCST) conditions of the mPEG. The DEGVE monomer is used to create PEG-like layers by use of low power plasma conditions. The ability of the surfaces to resist protein adsorption was investigated quantitatively using 125I-radiolabeled human fibrinogen, and the conformation of the adsorbed protein was tested using an anti-fibrinogen monoclonal antibody in an enzyme-linked immunosorbent assay. The results showed that PEGylated surfaces adsorbed significantly less (up to 90% less) fibrinogen, and that unfolding of adsorbed fibrinogen was more pronounced on the linear mPEG layers than on the PEG-like plasma polymer surfaces. Adhesion of in-vitro differentiated macrophage-like U937 cells was reduced on both the PEG-like plasma polymer surfaces and the linear mPEG layers compared to the unmodified PET surface, but cells adhering to the PEG-like plasma polymer surfaces secreted less tumor necrosis factor-α (TNF- α) than cells adhering to the linear mPEG layers. In conclusion, the method for preparing non-fouling surfaces for long-term implanted devices influence surface-induced cellular responses of the host.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号