首页 | 本学科首页   官方微博 | 高级检索  
     


Aqueous Cr(VI) reduction by electrodeposited zero-valent iron at neutral pH: acceleration by organic matters
Authors:Liu Junxi  Wang Chuan  Shi Jianying  Liu Hong  Tong Yexiang
Affiliation:Institute of Optoelectronic and Functional Composite Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China.
Abstract:This work investigated the effect of co-existing organic matters on aqueous Cr(VI) reduction by electrodeposited zero-valent iron (ED Fe(0)) at neutral pH. The ED Fe(0) prepared in a solution containing mixture of saccharin, L-ascorbic acid and sodium dodecyl sulfate showed higher activity in reducing the aqueous Cr(VI) at neutral pH than that prepared without any organic presence. XRD and SEM indicated that the structure of ED Fe(0) was significantly improved to nano-scale by the presence of organic mixture in the preparation solution. Further, the ED Fe(0) activity in the Cr(VI) reduction at neutral pH was increased by the co-existence of citric acid or oxalic acid in the chromate solution. Electrochemical impedance spectroscopy (EIS) demonstrated that the corrosive current increased with the concentration of organic matter in the reaction solution. With the co-existing organic matters in the preparation solution, the ED Fe(0) corroded more rapidly due to its nano-size, thus the Cr(VI) reduction by the ferrous iron was accelerated. With the co-existing organic matters in the reaction solution, the Cr(VI) reduction was accelerated by a Fe(II) complex as the main electron donor, and a prevention of the passivation due to the Fe(III) and Cr(III) complexes also accelerated the Cr(VI) reduction.
Keywords:Zero-valent iron  Chromium(VI) reduction  Electrodeposition  Electrochemical impedance spectroscopy
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号