首页 | 本学科首页   官方微博 | 高级检索  
     


Microbial α-L-Rhamnosidases of Glycosyl Hydrolase Families GH78 and GH106 Have Broad Substrate Specificities toward α-L-Rhamnosyl- and α-L-Mannosyl-Linkages
Authors:Feunai Agape Papalii Tautau  Minoru Izumi  Emiko Matsunaga  Yujiro Higuchi  Kaoru Takegawa
Affiliation:1. Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University;2. Graduate School of Environmental and Life Science, Okayama University
Abstract:α-L-Rhamnosidases (α-L-Rha-ases, EC 3.2.1.40) are glycosyl hydrolases (GHs) that hydrolyze a terminal α-linked L-rhamnose residue from a wide spectrum of substrates such as heteropolysaccharides, glycosylated proteins, and natural flavonoids. As a result, they are considered catalysts of interest for various biotechnological applications. α-L-rhamnose (6-deoxy-L-mannose) is structurally similar to the rare sugar α-L-mannose. Here we have examined whether microbial α-L-Rha-ases possess α-L-mannosidase activity by synthesizing the substrate 4-nitrophenyl α-L-mannopyranoside. Four α-L-Rha-ases from GH78 and GH106 families were expressed and purified from Escherichia coli cells. All four enzymes exhibited both α-L-rhamnosyl-hydrolyzing activity and weak α-L-mannosyl-hydrolyzing activity. SpRhaM, a GH106 family α-L-Rha-ase from Sphingomonas paucimobilis FP2001, was found to have relatively higher α-L-mannosidase activity as compared with three GH78 α-L-Rha-ases. The α-L-mannosidase activity of SpRhaM showed pH dependence, with highest activity observed at pH 7.0. In summary, we have shown that α-L-Rha-ases also have α-L-mannosidase activity. Our findings will be useful in the identification and structural determination of α-L-mannose-containing polysaccharides from natural sources for use in the pharmaceutical and food industries.
Keywords:glycosyl hydrolase family 78  glycosyl hydrolase family 106  α  -L-rhamnosidase  α  -L-mannosidase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号