首页 | 本学科首页   官方微博 | 高级检索  
     


Compression of fluorescence microscopy images based on the signal-to-noise estimation
Authors:Bernas Tytus  Asem Elikplimi K  Robinson J Paul  Rajwa Bartek
Affiliation:Department of Plant Anatomy and Cytology, Faculty of Biology and Protection of Environment, Katowice, Poland.
Abstract:Modern microscopic techniques like high-content screening (HCS), high-throughput screening, 4D imaging, and multispectral imaging may involve collection of thousands of images per experiment. Efficient image-compression techniques are indispensable to manage these vast amounts of data. This goal is frequently achieved using lossy compression algorithms such as JPEG and JPEG2000. However, these algorithms are optimized to preserve visual quality but not necessarily the integrity of the scientific data, which are often analyzed in an automated manner. Here, we propose three observer-independent compression algorithms, designed to preserve information contained in the images. These algorithms were constructed using signal-to-noise ratio (SNR) computed from a single image as a quality measure to establish which image components may be discarded. The compression efficiency was measured as a function of image brightness and SNR. The alterations introduced by compression in biological images were estimated using brightness histograms (earth's mover distance (EMD) algorithm) and textures (Haralick parameters). Furthermore, a microscope test pattern was used to assess the effect of compression on the effective resolution of microscope images.
Keywords:imaging  microscopy  photobleaching  image quality  image compression
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号