首页 | 本学科首页   官方微博 | 高级检索  
     


Exploiting Ionic Coupling in Electronic Devices: Electrolyte‐Gated Organic Field‐Effect Transistors
Authors:Matthew J. Panzer  C. Daniel Frisbie
Affiliation:1. Laboratory of Organic Optics and Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (USA);2. Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455 (USA)
Abstract:Currently there is great interest in using organic semiconductors to develop novel flexible electronic applications. An emerging strategy in organic semiconductor materials research involves development of composite or layered materials in which electronic and ionic conductivity is combined to create enhanced functionality in devices. For example, we and other groups have employed ionic motion to modulate electronic transport in organic field‐effect transistors using solid electrolytes. Not only do these transistors operate at low voltages as a result of greatly enhanced capacitive coupling, but they also display intriguing transport phenomena such as negative differential transconductance. Here, we discuss differences in operation between traditional (e.g., SiO2) and electrolyte‐based dielectrics, suggest further improvements to currently used electrolyte materials, and propose several possibilities for exploiting electrolytes in future applications with both organic and inorganic semiconductors.
Keywords:charge transport  conductivity  electrolytes  organic field‐effect transistors  semiconductors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号