首页 | 本学科首页   官方微博 | 高级检索  
     

铝电解槽针振信息元分析和诊断系统的开发与应用
引用本文:李贺松 姜昌伟 梅炽 周乃君 唐骞 黄涌波. 铝电解槽针振信息元分析和诊断系统的开发与应用[J]. 矿冶, 2005, 14(3): 98-101
作者姓名:李贺松 姜昌伟 梅炽 周乃君 唐骞 黄涌波
作者单位:中南大学能源与动力工程学院,长沙,410083;中铝公司广西分公司电解厂,广西平果,531400
摘    要:针对铝电解槽针振信息元诊断手段的不足,提出基于小波-神经网络技术的铝电解槽针振信息元分析与诊断的新方法。获取5种针振信息元的特征波谱作为神经网络的训练样本,建立神经网络诊断系统。分析了系统软硬件结构及其特点,并在350kA预焙铝电解槽上进行实验和仿真。实验证明该系统有很高的精度,且具有很好的应用价值。

关 键 词:铝电解槽  针振  小波包分析  神经网络  诊断系统
文章编号:1005-7854(2005)03-0098-04
收稿时间:2005-04-11
修稿时间:2005-04-11

DEVELOPMENT AND APPLICATION OF ANALYSIS AND DIAGNOSIS SYSTEM OF INFORMATION ELEMENTS OF NOISE IN ALUMINUM REDUCTION CELLS
Li HeSong;Jiang ChangWei;Mei Chi;Zhou NaiJun;Tang Qian;Huang ChongBo. DEVELOPMENT AND APPLICATION OF ANALYSIS AND DIAGNOSIS SYSTEM OF INFORMATION ELEMENTS OF NOISE IN ALUMINUM REDUCTION CELLS[J]. Mining & Metallurgy, 2005, 14(3): 98-101
Authors:Li HeSong  Jiang ChangWei  Mei Chi  Zhou NaiJun  Tang Qian  Huang ChongBo
Abstract:A novel method of pattern recognition and diagnosis of working conditions in aluminum reduction cells based on the wavelet-neural network is proposed according to the shortage of diagnosis way of information elements of noise in aluminum reduction cells. Five types of frequency spectrum characteristics of noise in aluminum reduction cells are gained as training sample of ANN. Diagnosis System of ANN was developed for finding information dements of noise in aluminum reduction cells. The software and hardware and their characteristics of system are analyzed. All simulated information elements of noise are emulated on 350kA prebaked aluminum reduction cells. The high precision of this novel method and good value of application are proved by the simulation results.
Keywords:Aluminum reduction cells   Noise   Wavelet packet   Neural network   Diagnosis system
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《矿冶》浏览原始摘要信息
点击此处可从《矿冶》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号