首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of a major permeability barrier in the zebrafish embryo
Authors:M Hagedorn  FW Kleinhans  D Artemov  U Pilatus
Affiliation:Reproductive Physiology Program, National Zoological Park, Smithsonian Institution, Washington, District of Columbia 20008, USA. mhagedorn@nzp.si.edu
Abstract:Fish embryos represent a class of multicompartmental biological systems that have not been successfully cryopreserved, primarily because of the lack of understanding of how water and cryoprotectants permeate the compartments. We are using the zebrafish embryo as a model to understand these kinetics. Zebrafish embryos have two major compartments, the blastoderm and the yolk, which is surrounded by the multinucleated yolk syncytial layer (YSL). We determined the water and cryoprotectant permeability in these compartments using two methods. First, we measured shrink/swell dynamics in optical volumetric experiments. Zebrafish embryos shrank over time and did not re-expand while immersed in dimethyl sulfoxide (DMSO) or propylene glycol. Second, we measured DMSO uptake with diffusion-weighted nuclear magnetic resonance spectroscopy. DMSO uptake was rapid during the first few minutes, then gradual thereafter. We used one- and two-compartment models to analyze the data and to determine the permeability parameters. We found that the two-compartment model provided a better fit to the data. On the basis of this model and in the presence of DMSO, the yolk and blastoderm had very similar water permeabilities (i.e., 0.01 and 0. 005 micron x min-1atm-1, respectively), but they had different DMSO permeabilities separated by three orders of magnitude (i.e.,
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号