首页 | 本学科首页   官方微博 | 高级检索  
     


Oxidation Kinetics of an Amorphous Silicon Carbonitride Ceramic
Authors:Rishi Raj  Linan An  Sandeep Shah  Ralf Riedel  Claudia Fasel  Hans-Joachim Kleebe
Affiliation:Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309;Fachgebiet Disperse Feststoffe, Fachbereich Materialwissenschaft, Technische Universität Darmstadt, D–64287 Darmstadt, Germany;Institut für Materialwissenschaft, Universität Bayreuth, D–95440 Bayreuth, Germany
Abstract:The oxidation kinetics of amorphous silicon carbonitride (SiCN) was measured at 1350°C in ambient air. Two types of specimens were studied: one in the form of thin disks, the other as a powder. Both specimens contained open nanoscale porosity. The disk specimens exhibited weight gain that saturated exponentially with time, analogous to the oxidation behavior of reaction-bonded Si3N4. The saturation value of the weight gain increased linearly with specimen volume, suggesting the nanoscale pore surfaces oxidized uniformly throughout the specimen. This interpretation was confirmed by high-resolution electron microscopy and secondary ion mass spectroscopy. Experiments with the powders (having a particle size much larger than the scale of the nanopores) were also consistent with measurements of the disks. However, the powder specimens, having a high surface-to-volume ratio, continued to show measurable weight gain due to oxidation of the exterior surface. The wide range of values for the surface-to-volume ratio, which included all specimens, permitted a separation of the rate of oxidation of the free surface and the oxidation of the internal surfaces of the nanopores. Surface oxidation data were used to obtain the rate constant for parabolic growth of the oxidation scale. The values for the rate constant obtained for SiCN lay at the lower end of the spectrum of oxidation rates reported in the literature for several Si3N4 and SiC materials. Convergence in the behavior of SiCN and CVD-SiC is ascribed to the purity of both materials. Conversely, it is proposed that the high rates of oxidation of sintered polycrystalline silicon carbides and nitrides, as well as the high degree of variability of these rates, might be related to the impurities introduced by the sintering aids.
Keywords:silicon carbonitride    oxidation    kinetics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号