首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群参数优化的 O-VMD 数据处理方法研究
引用本文:邢燕好,于 昊,张 佳,桂 珺,孙 盈. 基于粒子群参数优化的 O-VMD 数据处理方法研究[J]. 仪器仪表学报, 2023, 44(4): 304-313
作者姓名:邢燕好  于 昊  张 佳  桂 珺  孙 盈
作者单位:1. 沈阳工业大学信息科学与工程学院;2. 中国兵器工业集团航空弹药研究院有限公司
基金项目:国家自然科学基金(62241107)、辽宁省自然科学基金(2022-BS-180)、辽宁省教育厅面上项目(LJKMZ20220474)资助
摘    要:针对电磁超声测厚换能器保护提离距过大导致回波信号微弱且信噪比低,难以在时域内直接准确提取渡越时间得到精确厚度值的问题,提出频域内粒子群(PSO)优化变分模态分解(VMD)参数的 O-VMD 渡越时间提取方法。 分别对分解层数和惩罚因子选取固定参数,及基于峭度与功率谱熵联合适应度函数的 PSO 算法获取 VMD 遍历优化参数,进行双次 VMD 处理,滤除高频及低频噪声;选取能量最大模态进行信号重构,并应用希尔伯特变换获取回波信号时差。 在不同提离条件下,对不同厚度铝板检测数据采用 O-VMD、经验模态分解(EMD)等方法进行信号对比处理,结果表明,提离距在 0 ~ 2. 1 mm,O-VMD 方法最大误差为 0. 67% ,且误差与提离距成正比,为精确获取高提离距测厚数据提供依据。

关 键 词:电磁超声  粒子群  参数优化  变分模态分解  O-VMD

Research on the O-VMD thickness measurement data processing method based on particle swarm optimization
Xing Yanhao,Yu Hao,Zhang Ji,Gui Jun,Sun Ying. Research on the O-VMD thickness measurement data processing method based on particle swarm optimization[J]. Chinese Journal of Scientific Instrument, 2023, 44(4): 304-313
Authors:Xing Yanhao  Yu Hao  Zhang Ji  Gui Jun  Sun Ying
Affiliation:1. School of Information Science and Engineering, Shenyang University of Technology; 2. China North Industries Group Aviation Ammunition Research Institute Co. Ltd.
Abstract:To solve the problem of weak echo signal and low signal-to-noise ratio caused by large lift-off distance of electromagneticultrasonic thickness measurement transducer protection, which makes it difficult to directly and accurately extract transit time to obtainaccurate thickness value in time domain, this article proposes an O-VMD transit time extraction method based on particle swarmoptimization of variational modal decomposition parameters in frequency domain. The fixed parameters are selected for decompositionlayers and penalty factors respectively, and the particle swarm optimization algorithm based on the joint fitness function of kurtosis andpower spectrum entropy is used to obtain the ergodic optimization parameters of the variational mode decomposition. The VMD processingis performed twice to filter high-frequency and low-frequency noise. The maximum energy mode is selected for signal reconstruction, andthe transit time of echo signal is obtained by applying Hilbert transform. Under different lift off distances, O-VMD, EMD and othermethods are used for signal contrast processing of aluminum plate detection data with different thicknesses. The results show that themaximum error of O-VMD method is 0. 67% when the lift off distance is within 0 ~ 2. 1 mm, and the error is proportional to the lift offdistance, providing a basis for accurately obtaining thickness measurement data with high lift off distance.
Keywords:EMAT   particle swarm optimization   parameter optimization   variational modal decomposition   O-VMD
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号