首页 | 本学科首页   官方微博 | 高级检索  
     

基于自注意力机制的深度学习模拟电路故障诊断
引用本文:杨东儒,魏建文,林雄威,刘 明,鲁圣国. 基于自注意力机制的深度学习模拟电路故障诊断[J]. 仪器仪表学报, 2023, 44(3): 128-136
作者姓名:杨东儒  魏建文  林雄威  刘 明  鲁圣国
作者单位:1. 广东工业大学集成电路学院;2. 深圳信息职业技术学院微电子学院
基金项目:东莞市核心技术攻关前沿项目(2019622101006)、深圳市科技计划项目(JCYJ20180307123857045)、深圳信息职业技术学院科研项目(SZIIT2022KJ019)资助
摘    要:模拟电路是集成电路中的重要组成部分,基于深度学习技术对模拟电路发生的故障进行检测,并精准识别故障的类型是当前集成电路测试领域的研究热点。针对模拟集成电路故障检测存在困难的问题,利用人工智能在图像识别领域、语音分类领域的先进技术,提出了基于自注意力机制检测Sallen-Key型低通滤波电路故障的深度学习模拟电路故障检测方案,将输出信号采样成音频信号,并将其输入到自注意力变换网络的音频分类模型中进行训练、测试和优化。结果表明,通过自注意力变换网络音频分类在9种不同的故障类型诊断中,平均准确率达93.1%,最高准确率达98.1%。该模型收敛速度更快,具有较强的模拟电路故障检测能力。

关 键 词:集成电路测试  故障检测  深度学习  频谱图  自注意力变换网络

A fault diagnosis algorithm for analog circuits based on self-attention mechanism deep learning
Yang Dongru,Wei Jianwen,Lin Xiongwei,Liu Ming,Lu Shengguo. A fault diagnosis algorithm for analog circuits based on self-attention mechanism deep learning[J]. Chinese Journal of Scientific Instrument, 2023, 44(3): 128-136
Authors:Yang Dongru  Wei Jianwen  Lin Xiongwei  Liu Ming  Lu Shengguo
Affiliation:1. School of Integrated Circuits, Guangdong University of Technology;2. School of Microelectronics, Shenzhen Institute of Information Technology
Abstract:Analog circuit is an essential part of the integrated circuit. One of the current research hotspots in integrated circuit testing isthe detection of faults occurring in analog circuits and the accurate identification of fault types based on deep learning techniques. Toaddress the difficulties in fault detection of analog integrated circuits, the advanced achievements of artificial intelligence in the field ofimage recognition and speech classification is referenced and an analog circuit fault detection idea based on a deep learning algorithm ofself-attention mechanism is proposed, which can be used to detect faults in Sallen-Key low-pass filter circuits. The output signal issampled into an audio signal and fed into an audio classification model based on a self-attentive transform network for training, testing,and optimization. The results show that fault detection based on the self-attentive mechanism audio classification has an average accuracyof 93. 1% and a maximum accuracy of 98. 1% . Nine different fault types can be detected. The model converges fast and can detect faultsin analog circuits, which thoroughly verifies the feasibility of the proposed idea.
Keywords:integrated circuits testing   fault detection   deep learning   spectrogram   self-attention transformer network
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号