首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应Kmeans和LSTM的短期光伏发电预测
作者姓名:陈瑶  陈晓宁
作者单位:安徽大学电气工程与自动化学院,合肥230601
摘    要:光伏发电功率预测是可持续电力系统设计,能源转换管理和智能电网建设领域的重要主题。精准的光伏发电功率预测是电网日常调度管理与安全稳定运行的关键。本文提出了一种基于自适应Kmeans和长短期记忆(LSTM)的短期光伏发电功率预测模型。根据短期光伏发电特性,选取了预测模型的初始训练集。采用自适应Kmeans对初始训练集以及预测日的光伏发电功率进行聚类。在各类别的初始训练集数据上分别训练LSTM,结合训练完成的LSTM进行发电功率的预测。最后,考虑三种典型天气类型,采用所提方法进行仿真分析。结果表明,与其他三种方法相比,本文提出的方法的精度有了明显提升,误差更小。

关 键 词:光伏发电功率  预测  自适应Kmeans  LSTM  聚类
收稿时间:2020-03-13
修稿时间:2020-03-14
本文献已被 万方数据 等数据库收录!
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号