首页 | 本学科首页   官方微博 | 高级检索  
     


Microbial and chemical origins of the bactericidal activity of thermally treated yellow mustard powder toward Escherichia coli O157:H7 during dry sausage ripening
Authors:Luciano Fernando B  Belland Julie  Holley Richard A
Affiliation:
  • a Department of Food Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
  • b ENSBANA, Université de Bourgogne, Dijon, Bourgogne 21000, France
  • Abstract:Work examines the origin of bactericidal activity in mustard flour and explores the relative contribution from starter cultures, E. coli O157:H7 itself and other sources. Bacteria can degrade naturally occurring glucosinolates in mustard and form isothiocyanates with antimicrobial activity. In the present work, 24 starter cultures (mostly from commercial mixtures) were screened for their capacity to decompose the glucosinolate, sinalbin. The most active pair, Pediococcus pentosaceus UM 121P and Staphylococcus carnosus UM 123M, were used together for the production of dry fermented sausage contaminated with E. coli O157:H7 (~ 6.5 log CFU/g). They were compared to industrial starters used previously (P. pentosaceus UM 116P and S. carnosus UM 109M) for their reduction of E. coli O157:H7 viability. Sausage batches containing hot mustard powder (active myrosinase), cold mustard powder (inactivated myrosinase), autoclaved mustard powder (inactivated myrosinase) and no mustard flour (control) were prepared. Interestingly, both pairs of starter cultures yielded similar results. Elimination of E. coli O157:H7 (> 5 log CFU/g) occurred after 31 days in the presence of hot flour and in 38 days when the cold flour was added. Reductions > 5 log CFU/g of the pathogen did not occur (up to 38 days) in the control group. It was found that E. coli O157:H7 itself had a greater effect on sinalbin conversion than either pair of starter cultures, and glucosinolate degradation by the starter cultures was less important in determining E. coli survival. The autoclaved powder caused more rapid bactericidal action against E. coli O157:H7, yielding a > 5 log CFU/g reduction in 18 days. This may have been a result of the formation and/or release of antimicrobial substances by the autoclave treatment. Autoclaved mustard powder could potentially solve an important challenge facing the meat industry as it strives to manufacture safe dry fermented sausages.
    Keywords:E  coli O157:H7  Dry sausage  Mustard powder  Isothiocyanates  Antioxidants  Phenolics
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号