首页 | 本学科首页   官方微博 | 高级检索  
     


Rapid degradation characteristics of an air-cooled PEMFC stack
Authors:Lizhong Luo  Bi Huang  Zongyi Cheng  Qifei Jian
Affiliation:School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, China
Abstract:Durability is one of the obstacles to the large-scale commercialization of proton exchange membrane fuel cell (PEMFC) stacks. Understanding its decay behavior is a prerequisite for improving durability. In this study, rapid degradation characteristics of an air-cooled PEMFC stack are investigated. Due to the simultaneous presence of various degradation sources, the maximum power of the PEMFC stack has been reduced by 39.6% after just 74.6 h of operations. Performance degradation characteristics are sought by analyzing the cell voltage, temperature distribution, ion chromatography, and surface morphology of the gas diffusion layer. The result shows that abnormal cell voltage and temperature distribution can reflect the problematic location. The fluoride ion emission rate is 0.111 mg/day, which proves that the membrane has been seriously degraded. Contact angle reduction and impurities attached to the surface of the gas diffusion layer lead to the water management failure. It is also found that the main factor for performance degradation could be different under different current conditions. And more information can be found under higher current conditions during monitoring the decay of PEMFCs. This study helps to deepen the understanding of performance degradation characteristics.
Keywords:air-cooled  cell voltage  degradation characteristics  proton exchange membrane fuel cell  temperature distribution  water management
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号