首页 | 本学科首页   官方微博 | 高级检索  
     


Parametric study of asymmetric thermoelectric devices for power generation
Authors:Ding Luo  Ruochen Wang  Wei Yu  Weiqi Zhou
Affiliation:1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China;2. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China
Abstract:Thermoelectric devices are considered a promising technique for recycling waste heat. In the present work, a three-dimensional numerical model is developed to study the output performance of thermoelectric devices. A comprehensive analysis is performed based on a conventional π-type thermoelectric couple. The results indicate that the maximum power of thermoelectric devices generally increases with a decrease in height and an increase in cross-sectional area; the maximum efficiency exhibits the opposite trends. The best way to reduce heat losses is by using ceramic plates with higher thermal conductivity. Moreover, the parasitic internal resistance exists in the thermoelements, and its influencing factors are studied. To minimize electric losses, an asymmetric structure is proposed for thermoelectric devices. The results exhibit that the optimal cross-sectional area ratio of the p-type and n-type legs (Sp/Sn) is mainly contingent upon the thermoelectric material parameters; the greater the differences in the parameters of p-type and n-type thermoelectric materials, the greater the gains provided by the asymmetric structure. Furthermore, the experimental data present great consistency with the numerical results. The research results may help guide the design of thermoelectric devices with relatively lower power losses.
Keywords:asymmetric structure  numerical model  thermoelectric devices  waste heat
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号