首页 | 本学科首页   官方微博 | 高级检索  
     


Freestanding graphitic carbon nitride-based carbon nanotubes hybrid membrane as electrode for lithium/polysulfides batteries
Authors:Zongzhen Wu  Shanshan Yao  Ruiduo Guo  Yangyang Li  Cuijuan Zhang  Xiangqian Shen  Tianbao Li  Shibiao Qin
Affiliation:1. Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu University, Zhenjiang, China;2. Hunan Engineering Laboratory of Power Battery Cathode Materials, Changsha Research Institute of Mining and Metallurgy, Changsha, China
Abstract:Lithium sulfur batteries have drawled worldwide attention in recent years, which benefit of its high-density energetic, low cost, and environmental benignity. Nevertheless, the shuttle effect of polysulfides and resulting self-discharge lead to capacity fade loss and poor electrochemical performance. Herein, graphitic-carbon nitride/carbon nanotubes (g-C3N4/CNTs) hybrid membrane is fabricated by the flow-direct vacuum filtration process. The as-prepared 3-D freestanding g-C3N4/CNTs membrane employed as positive current collector containing Li2S6 catholyte solution for lithium/polysulfides batteries. The fabricated g-C3N4/CNTs provide a physical barriers and chemisorption resist polysulfide shuttling. Moreover, the conductive network constructed by CNTs can empower sulfur to be evenly distributed in the cathode and accelerates electron transport. Thus, to further prove the cooperative effect of g-C3N4 and CNTs, the freestanding g-C3N4/CNTs/Li2S6 electrode exhibits more stable electrochemical performance than CNTs/Li2S6 electrode, deliver the first discharge capacity of 876 mAh g−1 at 0.5 C and maintained at 633 mAh g−1 after 300 cycles. The sulfur mass in electrode was increased to 7.11 mg, and the g-C3N4/CNTs/Li2S6 electrode also possess a high capacity retention of 75.5%. Meanwhile, g-C3N4 modified CNTs can not only trap polysulfides by strong adsorption but also effectively inhibit the self-discharge behavior of lithium/polysulfides batteries. As a consequence, the g-C3N4/CNTs composites for lithium/polysulfides batteries are indicating an excellent electrochemical stability with a long-term storage without obvious capacity degradation.
Keywords:freestanding  g-C3N4/CNTs membrane  lithium/polysulfides batteries  self-discharge  shuttle effect
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号