首页 | 本学科首页   官方微博 | 高级检索  
     


Catalytic copyrolysis of metal impregnated biomass and plastic with Ni-based HZSM-5 catalyst: Synergistic effects,kinetics and product distribution
Authors:Yunwu Zheng  Jida Wang  Can Liu  Yi Lu  Xu Lin  Wenbin Li  Zhifeng Zheng
Affiliation:1. National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, Kunming, China;2. Xiamen Key Laboratory for High-Valued Conversion Technology of Agricultural Biomass, Xiamen University, Xiamen, China
Abstract:The present work aims to investigate the thermal behavior, kinetics, thermodynamics, and product distribution during copyrolysis of transition metal salt (Ni, Co, Zn, Cu, and Fe)-added biomass and model compounds with low density polyethylene(LDPE) over a Ni-based HZSM-5 catalyst by TGA and fixed bed reactor. The interactions and reaction mechanisms during copyrolysis were evaluated. The influence of Ni-impregnated biomass (C-M) and Ni-modified HZSM-5 (Ni/HZ) on the formation of pyrolysis bio-oil from biomass and model compounds and its subsequent effect on catalytic pyrolysis vapor upgrading was discussed. The results indicated that the presence of transition metal decreased the thermal degradation temperature and thermodynamics parameters; maximum decomposition rate, and reaction complexity. Ni/HZ catalyst could further decrease the activation energy, accelerate the reaction rate and change reaction process, and the modified samples/LDPE under copyrolysis with HZSM-5 catalyst presented a more significant effect than Ni/HZ catalyst. Subsequently, the Ea of pine, cellulose and lignin changed from 24.11, 18.29, and 28.68 kJ/mol (CP@Ni/HZ) to 56.04, 69.84, and 16.21 kJ/mol (CP-Ni@HZSM-5), respectively. In addition, Ni could inhibit the depolymerization of cellulose and promoted the formation of char, coke, and lignin derived phenolics. And Ni-impregnated biomass reduced the formation of desired aromatic hydrocarbons, but result in increasing of the char and non-condensable gases. But Ni/HZ catalysts promote the conversion of biomass to target products.
Keywords:catalytic copyrolysis  lignocellulosic biomass  low-density polyethylene  product distribution  reaction kinetic  transition metal salt
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号