首页 | 本学科首页   官方微博 | 高级检索  
     

基于人类社交行为的动态多目标优化
引用本文:伍大清,郑建国,朱佳俊,孙 莉. 基于人类社交行为的动态多目标优化[J]. 计算机科学, 2015, 42(8): 249-252, 278
作者姓名:伍大清  郑建国  朱佳俊  孙 莉
作者单位:南华大学计算机科学与技术学院 衡阳421001;成都大学模式识别与智能信息处理四川省重点实验室 成都610106;东华大学旭日工商管理学院 上海200051,东华大学旭日工商管理学院 上海200051,江南大学商学院 无锡214000,东华大学旭日工商管理学院 上海200051
基金项目:本文受湖南省教育厅资助
摘    要:为了提高多目标微粒群优化算法处理多目标优化问题的性能,降低计算复杂度,改善算法的收敛性,提出了一种基于人类社交行为的多目标动态微粒群优化算法。考虑到粒子寻优过程受到环境中精英粒子与平庸粒子的影响,分别对自身产生推力与阻力作用,并引入局部跳出策略,使算法具有很强的全局搜索能力和较好的鲁棒性能。通过典型的多目标优化函数对算法进行了测试验证,结果表明提出的多目标算法具有较快的收敛速度和较强的跳出局部最优能力,性能优越,可供许多领域优化问题求解借鉴。

关 键 词:多目标优化算法  精英粒子  平庸粒子  局部跳出策略

Dynamic Multi-objective Particle Swarm Optimization Algorithm Based on Human Social Behavior
WU Da-qing,ZHENG Jian-guo,ZHU Jia-jun and SUN Li. Dynamic Multi-objective Particle Swarm Optimization Algorithm Based on Human Social Behavior[J]. Computer Science, 2015, 42(8): 249-252, 278
Authors:WU Da-qing  ZHENG Jian-guo  ZHU Jia-jun  SUN Li
Affiliation:School of Computer Science and Technology,University of South China,Hengyang 421001,China;Key Laboratory of Pattern Recognition and Intelligent Information Processing,Institutions of Higher Education of Sichuan Province,Chengdu University,Chengdu 610106, China;Glorious Sun School of Business and Management,Donghua University,Shanghai 200051,China,Glorious Sun School of Business and Management,Donghua University,Shanghai 200051,China,School of Business,Jiangnan University,Wuxi 214000,China and Glorious Sun School of Business and Management,Donghua University,Shanghai 200051,China
Abstract:In order to improve the processing performance of the multi-objective optimization problem,reduce the computational complexity and improve the convergence of the algorithm,a multi-objective particle swarm optimization algorithm based on a human social behavior was proposed.The strategies such as promotion/resistance factor and the local jump strategy are introduced in proposed algorithm,to make the algorithm have strong global search ability and good robust performance.Some typical multi-objective optimization functions were tested to verify the algorithm.The results show that the proposed algorithm has superior performance of fast convergence speed and strong ability to jump out of local optimum,so it can be used for many fields.
Keywords:Multi-objective optimization algorithm  Elite particle  Mediocrity particle  Local jump strategy
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机科学》浏览原始摘要信息
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号