首页 | 本学科首页   官方微博 | 高级检索  
     


Highly dispersed and electrically conductive polycarbonate/oxidized carbon nanofiber composites for electrostatic dissipation applications
Authors:S. Kumar
Affiliation:School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
Abstract:The influence of low cost, commercially oxidized carbon nanofibers (ox-CNFs) on the morphological, thermal, mechanical and electrical properties of polycarbonate (PC) composites was examined. Using a simple solution mixing process leads to good dispersion and high packing density of CNFs in the resultant composites. The composite materials exhibit a dramatic improvement in the DC conductivity; for example, increasing from 2.36 × 10−14 S/m for PC to ca. 10−2 S/m for the composite at only 3.0 wt.% of CNFs, and exhibits a very fast static charge dissipation rate. Dynamic mechanical analysis showed a remarkable increase in storage modulus (282%) at 165 °C, compared to pure PC. Thermogravimetric analysis showed that thermal stability of the composites increased by 54 °C compared to the pure PC. To our knowledge, the measured electrical conductivity and thermal properties for PC/CNF are the highest values yet reported for PC/CNF composites at comparable loadings. The AC/DC conductivity is shown to play an important role to predict the state of dispersion.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号