首页 | 本学科首页   官方微博 | 高级检索  
     


Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery
Authors:Lu Yue  Fengqiang Sun  Lingzhi Zhao
Affiliation:a School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
b Key Lab of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006, China
Abstract:A highly effective hydroxylated-functionalization of carbon fibres for use as electrodes of all-vanadium redox flow battery (VRFB) was developed. Carbon paper made of carbon fibres was hydroxylated ultrasonically with mixed acids (H2SO4/HNO3, VH2SO4/VHNO3 = 3/1) in a Teflon-lined stainless steel autoclave for different time at 80 °C. The structure, composition, and electrochemical properties of the treated samples for positive and negative electrodes of VRFB were characterized with Fourier transformation infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectrometry, scanning electron microscopy, X-ray diffraction, cyclic voltammetry, electrochemical impedance spectroscopy, and cell charge and discharge tests. The content of hydroxyl group changes from 3.8% for the untreated sample to 14.3% for the carbon paper treated in mixed acids for 10 h. The highly hydroxylated sample shows its high activity toward the redox reactions of V(II)/V(III) and V(IV)/V(V). The VRFB using the carbon paper treated for 8 h as the electrodes exhibits excellent performance under a current density of 10 mA cm−2. The average voltage efficiency reaches 91.3%, and the average energy efficiency reaches 75.1%. The mechanisms for the high hydroxylation of the carbon fibres with the mixed acids and the high activity of the treated sample toward the vanadium redoxs are discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号