The effect of pre-heating on flame propagation in nanocomposite thermites |
| |
Authors: | Birce Dikici Valery Levitas |
| |
Affiliation: | a Mechanical Engineering Department, Texas Tech University, Lubbock, TX 79409, USA b Departments of Mechanical Engineering, Aerospace Engineering, and Material Science and Engineering, Iowa State University, Ames, IA 50011, USA |
| |
Abstract: | Flame propagation in a confined tube configuration was evaluated for aluminum (Al) and molybdenum trioxide (MoO3) thermites starting at room temperature and pre-heated up to 170 °C. Flame propagation was analyzed via high speed imaging diagnostics and temperatures were monitored with thermocouples. Experiments were performed in a semi-confined flame tube apparatus housed in a reaction chamber initially at standard atmospheric pressure. The flame propagation behavior for the nano-particle thermite was compared to micron particle thermite of the same composition. Results indicate that increasing the initial temperature of the reactants results in dramatically increased flame speeds for nanocomposite thermite (i.e., from 627 to 1002 m/s for ambient and 105 °C pre-heat temperature, respectively) and for micron composite thermite (i.e., from 205 to 347 m/s for ambient and 170 °C pre-heat temperature, respectively) samples. Experimental studies were extended giving a cooling time for the heated thermites prior to ignition and flame propagation. It is shown that when 105 °C and 170 °C pre-heated thermites are cooled at a rate of 0.06 K/s, almost the same flame speeds are obtained as thermites at ambient temperature. However, when the cooling rate is increased to 0.13 K/s, the measured flame speeds approach the flame speeds of pre-heated samples. |
| |
Keywords: | Thermites Aluminum combustion Flame speeds Nanoparticles Reaction propagation Energetic material combustion |
本文献已被 ScienceDirect 等数据库收录! |
|