首页 | 本学科首页   官方微博 | 高级检索  
     


Delay-insensitive gate-level pipelining
Authors:S C  R F  J S  M  D  
Abstract:Gate-level pipelining (GLP) techniques are developed to design throughput-optimal delay-insensitive digital systems using NULL convention logic (NCL). Pipelined NCL systems consists of combinational, registration, and completion circuits implemented using threshold gates equipped with hysteresis behavior. NCL combinational circuits provide the desired processing behavior between asynchronous registers that regulate wavefront propagation. NCL completion logic detects completed DATA or NULL output sets from each register stage. GLP techniques cascade registration and completion elements to systematically partition a combinational circuit and allow controlled overlapping of input wavefronts. Both full-word and bit-wise completion strategies are applied progressively to select the optimal size grouping of operand and output data bits. To illustrate the methodology, GLP is applied to a case study of a 4-bit×4-bit unsigned multiplier, yielding a speedup of 2.25 over the non-pipelined version, while maintaining delay insensitivity.
Keywords:Asynchronous logic design  Self-timed circuits  Dual-rail encoding  Pipelining  NULL convention logic (NCL)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号