首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTM算法的门座式起重机减速箱故障诊断研究
引用本文:梁敏健,彭晓军,刘德阳. 基于LSTM算法的门座式起重机减速箱故障诊断研究[J]. 计算机测量与控制, 2021, 29(12): 67-72. DOI: 10.16526/j.cnki.11-4762/tp.2021.12.013
作者姓名:梁敏健  彭晓军  刘德阳
作者单位:广东省特种设备检测研究院珠海检测院,广东珠海519002
基金项目:广东省特种设备检测研究院科技项目(2020JD-2-04);广东省特种设备检测研究院科技项目(2020JD-2-05);广东省市场监督管理局科技项目(2018CT10);国家市场监督管理总局技术保障专项项目(2019YJ014);
摘    要:为实现门座式起重机减速箱机械故障的智能诊断和分类,运用长短期记忆网络构建了门座式起重机减速箱机械故障的自动诊断分类模型;首先设计并使用了基于labview的数据采集系统对门座式起重机的复合故障数据进行了采集,结合东南大学公开的齿轮箱故障数据建立了数据集;然后用数据增强的方法对数据进行预处理,接着采用长短期记忆神经网络,构建门座式起重机减速箱机械故障诊断模型;最后使用测试数据集对模型的诊断分类准确性进行了验证实验,结果表明该诊断模型能快速准确的对门座式起重机减速箱的机械故障进行自动诊断和分类,实现了96.8%的诊断分类准确率,与传统的基于CNN的诊断分类模型相比,准确率提高了4.1%,为下一步便携式智能诊断仪器的开发和应用奠定了一定的理论基础.

关 键 词:门座式起重机  齿轮箱机械故障  故障诊断  长短期记忆神经网络  循环神经网络
收稿时间:2021-07-16
修稿时间:2021-08-20

Research On Fault Diagnosis of Gearbox of Portal Crane Based on LSTM Algorithm
LIANG Minjian,PENG Xiaojun,LIU Deyang. Research On Fault Diagnosis of Gearbox of Portal Crane Based on LSTM Algorithm[J]. Computer Measurement & Control, 2021, 29(12): 67-72. DOI: 10.16526/j.cnki.11-4762/tp.2021.12.013
Authors:LIANG Minjian  PENG Xiaojun  LIU Deyang
Abstract:In order to realize the intelligent diagnosis and classification of mechanical failure of portal crane gearbox, the automatic diagnosis and classification model of mechanical failure of portal crane gearbox is constructed by using long-term and short-term memory network. Firstly, a data acquisition system based on labview is designed and used to collect the composite fault data of portal crane, and a data set is established based on the gearbox fault data published by Southeast University. Then the data is preprocessed by data enhancement method, and then the mechanical fault diagnosis model of portal crane gearbox is constructed by using long-term and short-term memory neural network. Finally, the diagnostic classification accuracy of the model is verified by the test data set. The results show that the diagnostic model can automatically diagnose and classify the mechanical faults of the portal crane gearbox quickly and accurately, and the diagnostic classification accuracy is 96.8%. Compared with the traditional diagnostic classification model based on CNN, the accuracy is improved by 4.1%, which lays a theoretical foundation for the development and application of portable intelligent diagnostic instruments in the next step.
Keywords:Portal crane   Mechanical failure of gearbox   Fault diagnosis   LSTM   RNN
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机测量与控制》浏览原始摘要信息
点击此处可从《计算机测量与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号