首页 | 本学科首页   官方微博 | 高级检索  
     

多小波系数特征提取方法在故障诊断中的应用
引用本文:赵志宏,杨绍普,刘永强. 多小波系数特征提取方法在故障诊断中的应用[J]. 振动、测试与诊断, 2015, 35(2): 276-280
作者姓名:赵志宏  杨绍普  刘永强
作者单位:(1.石家庄铁道大学信息科学与技术学院,050043)(2.河北省交通安全与控制重点实验室,050043)
基金项目:(国家自然科学基金资助项目(11172182,11202141,11472179)
摘    要:针对机械故障的特征提取问题,提出一种基于多小波系数的机械故障特征提取方法。首先,对不同工况的机械振动信号进行多小波分解;其次,利用分解后各层多小波系数的统计特征包括最大值、最小值、均值和标准差作为该工况振动信号的特征向量;最后,利用支持向量机的方法对机械故障进行识别。对滚动轴承正常状况与内圈故障、滚动体故障、外圈故障3种故障及多种损伤程度的实测振动信号进行故障识别试验,试验结果表明,该方法用于机械故障诊断可以获得较高的识别率,识别效果要优于基于单小波系数统计特征的识别方法,具有一定的工程应用价值。

关 键 词:多小波   故障诊断   特征提取   轴承   支持向量机

Application of Feature Extraction Method in Fault Diagnosis Based on Multi-Wavelet Coefficients
Zhao Zhihong,Yang Shaopu,Liu Yongqiang. Application of Feature Extraction Method in Fault Diagnosis Based on Multi-Wavelet Coefficients[J]. Journal of Vibration,Measurement & Diagnosis, 2015, 35(2): 276-280
Authors:Zhao Zhihong  Yang Shaopu  Liu Yongqiang
Affiliation:(1.School of Computing and Informatics, Shijiazhuang Tiedao University Shijiazhuang, 050043, China)(2.Key Laboratory of Traffic Safety and Control of Hebei Province Shijiazhuang, 050043, China)
Abstract:Aimed at feature extraction in machinery fault diagnosis, this paper proposes a new fault feature extraction method based on multi-wavelet coefficients. The original vibration signals of each fault category are decomposed into time-frequency representations using multi-wavelet transform. Then the maximum, minimum, mean and standard deviation of the multi-wavelet coefficients in each subband are calculated and used as the feature vector. The support vector machine method is used for machinery fault classification. Experiments are conducted on the real vibration signal of the roller bearing with normal conditions, inner fault, ball fault and outer fault. The experimental results indicate that the proposed approach can reliably identify the different fault categories, works better than the single wavelet method, and thus has potential for machinery fault diagnosis.
Keywords:multi-wavelet   fault diagnosis   feature extraction   bearing   support vector machine
本文献已被 CNKI 等数据库收录!
点击此处可从《振动、测试与诊断》浏览原始摘要信息
点击此处可从《振动、测试与诊断》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号