首页 | 本学科首页   官方微博 | 高级检索  
     


High-pressure freezing for immunocytochemistry
Authors:Monaghan,Perusinghe,&    ller
Affiliation:Institute of Cancer Research, 15, Cotswold Road, Sutton, Surrey SM2 5NG, U.K.,;ETHZ Zurich Lab. for EM1, Schmelzberg Str 7, CH8902 Zurich, Switzerland
Abstract:Ultrastructural immunocytochemistry requires that minimal damage to antigens is imposed by the processing methods. Immersion fixation in cross-linking fixatives with their potential to damage antigens is not an ideal approach and rapid freezing as an alternative sample-stabilization step has a number of advantages. Rapid freezing at ambient pressure restricts the thickness of well-frozen material obtainable to ≈ 15 μm or less. In contrast, high-pressure freezing has been demonstrated to provide ice-crystal-artefact-free freezing of samples up to 200 μm in thickness. There have been few reports of high-pressure freezing for immunocytochemical studies and there is no consensus on the choice of post-freezing sample preparation. A range of freeze-substitution time and temperature protocols were compared with improved tissue architecture as the primary goal, but also to compare ease of resin-embedding, polymerization and immunocytochemical labelling. Freeze-substitution in acetone containing 2% osmium tetroxide followed by epoxy-resin embedding at room temperature gave optimum morphology. Freeze-substitution in methanol was completed within 18 h and in tetrahydrofuran within 48 h but the cellular morphology of the Lowicryl-embedded samples was not as good as when samples were substituted in pure acetone. Acetone freeze-substitution was slow, taking at least 6 days to complete, and gave blocks which were difficult to embed in Lowicryl HM20. Careful handling of frozen samples avoiding rapid temperature changes reduced apparent ice-crystal damage in sections of embedded material. Thus a slow warm-up to freeze-substitution temperature and a long substitution time in acetone gave the best results in terms of freezing quality and cellular morphology. No clear differences emerged between the different freeze-substitution media from immunocytochemical labelling experiments.
Keywords:Antibodies    colloidal gold    freeze-substitution    high-pressure freezing    immunocytochemistry    Lowicryl
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号