首页 | 本学科首页   官方微博 | 高级检索  
     

输电塔风致响应数值模拟研究进展
摘    要:输电塔是输电线路中重要的承重设施,其结构安全性直接关系到国家电网和输电线路的正常运行。目前针对输电塔风致响应主要通过现场实测、风洞试验和数值模拟等方法进行研究。随着计算机技术和数值方法的发展,对输电塔风致响应特征进行数值模拟分析开始被广泛应用并取得了大量研究成果。相关的数值模拟研究先通过建立对应的风荷载模型和结构模型,然后以有限元方法分析结构动力响应特征和研究对应的风振控制方法,因此从风荷载模型、结构模型、动力响应特征和风振控制研究等方面总结输电塔风致响应数值模拟研究进展。近地面风场的平均风和脉动风模型是构建结构风荷载的基础。针对平均风主要采用指数型和对数型风速剖面模型,而脉动风则主要根据相关的脉动风谱进行模拟。在不同极端气象条件下,风场表现出不同于良态风的风场特征,对应的平均风和脉动风模型需要进一步根据实际情况研究。构建输电塔风荷载还需要结合相关的结构参数,其中塔体结构整体挡风效应以及塔体构件之间的遮挡效应可通过流场模拟进行分析研究。对输电塔塔体结构建立有限元模型时,通常可将之视为刚架结构和桁梁混合结构,而利用桁架结构进行模拟的误差较大。输电塔所承受的荷载除了风荷载等外部环境荷载外,还应考虑输电线对塔体结构作用带来的影响,因此需建立塔线耦合体系对实际输电线路中塔体结构特征进行模拟。在构建塔线体系有限元模型过程中,可结合悬链线理论和导线水平张力对导线进行建模和找形。基于风荷载模型和结构模型可进行塔体风致响应分析,结构动力特征会对风致响应产生重要的影响,其中导线对塔体的作用使得整体体系的结构动力特征更加复杂。对于不同来流风向条件下输电塔的风荷载,我国相关规范有对应的计算系数和分配系数,而在塔线耦合体系中,风向对塔体结构风致响应的影响更显著。根据是否需要外界能量输入,结构风振控制分为主动控制、被动控制和混合控制。迄今为止,被动控制特别是调谐质量阻尼器仍然是对输电塔风振控制的主要方法,其中阻尼器的自振频率应与塔体自振频率保持一致,风振控制效果才能达到最佳,但是塔线耦合作用使得风振控制的优化更为复杂。此外,还对未来可能的研究方向进行了展望,进一步研究特殊天气风场特征、开发更可靠的有限元建模方法、深入研究塔体扭转向及沿线向响应特征、优化TMD设计参数和布置方案等都应是未来重要的研究方向。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号