首页 | 本学科首页   官方微博 | 高级检索  
     

AdaBoost-EHMM算法及其在行为识别中的应用
引用本文:谷军霞,林润生,王 省. AdaBoost-EHMM算法及其在行为识别中的应用[J]. 计算机工程与应用, 2013, 49(14): 186-192
作者姓名:谷军霞  林润生  王 省
作者单位:国家气象信息中心 系统工程室,北京 100081
摘    要:隐马尔可夫模型(Hidden Markov Model,HMM)是一种有效的时序信号建模方法,已广泛用于语音识别、文字识别等领域,近年来也被用于人的行为识别。人的行为序列是一种特殊的时序信号,每类行为往往包含若干帧关键姿势。利用行为序列的这个特点,提出了AdaBoost-EHMM(AdaBoost-Exemplar-based HMM)算法,并将该算法应用于行为识别中。利用AdaBoost的特征选择方法将行为序列中的典型样本逐个选择出来作为HMM观测概率模型的均值,之后融合多级分类器进行行为识别。实验结果证明AdaBoost-EHMM算法在保证算法收敛的同时提高了识别率。

关 键 词:AdaBoost-EHMM  行为识别  特征提取  

AdaBoost-EHMM algorithm and application in action recognition
GU Junxia,LIN Runsheng,WANG Xing. AdaBoost-EHMM algorithm and application in action recognition[J]. Computer Engineering and Applications, 2013, 49(14): 186-192
Authors:GU Junxia  LIN Runsheng  WANG Xing
Affiliation:Division of System & Project, National Meteorological Information Centre, Beijing 100081, China
Abstract:Hidden Markov Model(HMM) is an effective method of modeling time sequence, and has been widely used in speech recognition, character recognition, and in action recognition recently. Human action sequence is one kind of special time sequences. Each action sequence always includes some key poses. So, AdaBoost-EHMM(AdaBoost-Exemplar-based HMM) algorithm is presented and used in action recognition. AdaBoost method is used to select exemplars from action sequences as the mean values of observation probability model. Fusion of multiple classifiers is adopted to classify action sequence. Effectiveness of the proposed approach is demonstrated with experiments.
Keywords:AdaBoost-Exemplar-based HMM(AdaBoost-EHMM)  action recognition  feature extraction  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号