首页 | 本学科首页   官方微博 | 高级检索  
     

Oracle中使用支持向量机的时间序列预测方法
引用本文:吴湘宁,胡 炫,胡光道,胡成玉,李桂玲. Oracle中使用支持向量机的时间序列预测方法[J]. 计算机工程与应用, 2013, 49(14): 121-125
作者姓名:吴湘宁  胡 炫  胡光道  胡成玉  李桂玲
作者单位:1.中国地质大学 计算机学院,武汉 4300742.中国地质大学 资源学院,武汉 430074
摘    要:利用Oracle数据库中的数据挖掘选件(Oracle Data Mining,ODM),并使用存储在Oracle数据库中的时间序列数据,可构建预测时间序列未来值的支持向量机(Support Vector Machines,SVM)模型。建模时,需去除时间序列中的趋势,将目标属性标准化,确定包含延迟变量窗口的尺寸,利用机器学习方法,由时间序列历史数据得出SVM预测模型。与传统时间序列预测模型相比,SVM预测模型能够揭示时间序列的非线性、非平稳性和随机性,从而得到较高的预测精度。

关 键 词:Oracle  时间序列  支持向量机  预测模型  

Applying support vector machines to time series prediction in Oracle
WU Xiangning,HU Xuan,HU Guangdao,HU Chengyu,LI Guiling. Applying support vector machines to time series prediction in Oracle[J]. Computer Engineering and Applications, 2013, 49(14): 121-125
Authors:WU Xiangning  HU Xuan  HU Guangdao  HU Chengyu  LI Guiling
Affiliation:1.College of Computer Science, China University of Geosciences, Wuhan 430074, China2.Faculty of Earth Resource, China University of Geosciences, Wuhan 430074, China
Abstract:Using Oracle Data Mining option(ODM) and the time series data stored in oracle database, the SVM(Support Vector Machines) model which is used to predict the future value of the time series can be constructed. To build SVM model, the trend in time series must be removed, and the target attribute should be normalized. The size of the time window in which including all the lag values should be determined, then the machine learning method can be used to construct a SVM prediction model according to the time series data. Comparing with the traditional time series prediction model, SVM prediction models can reveal non-linear, non-stationary and randomness of the time series, and have higher prediction accuracy.
Keywords:Oracle  time series  support vector machine  prediction model  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号