首页 | 本学科首页   官方微博 | 高级检索  
     

基于k均值聚类的直推式支持向量机学习算法
引用本文:王立梅,李金凤,岳 琪. 基于k均值聚类的直推式支持向量机学习算法[J]. 计算机工程与应用, 2013, 49(14): 144-146
作者姓名:王立梅  李金凤  岳 琪
作者单位:1.牡丹江师范学院 工学院,黑龙江 牡丹江 1570112.东北林业大学 信息与计算机工程学院,哈尔滨 150040
摘    要:针对直推式支持向量机(TSVM)学习模型求解难度大的问题,提出了一种基于k均值聚类的直推式支持向量机学习算法——TSVMKMC。该算法利用k均值聚类算法,将无标签样本分为若干簇,对每一簇样本赋予相同的类别标签,将无标签样本和有标签样本合并进行直推式学习。由于TSVMKMC算法有效地降低了状态空间的规模,因此运行速度较传统算法有了很大的提高。实验结果表明,TSVMSC算法能够以较快的速度达到较高的分类准确率。

关 键 词:直推式学习  支持向量机  k均值聚类  无标签样本  

k means clustering based transductive support vector machine algorithm
WANG Limei,LI Jinfeng,YUE Qi. k means clustering based transductive support vector machine algorithm[J]. Computer Engineering and Applications, 2013, 49(14): 144-146
Authors:WANG Limei  LI Jinfeng  YUE Qi
Affiliation:1.Institute of Engineering, Mudanjiang Normal University, Mudanjiang, Heilongjiang 157011, China2.College of Engineering and Technology, Northeast Forestry University, Harbin 150040, China
Abstract:As transductive support vector machine runs slowly, this paper proposes a k means clustering based transductive support vector machine algorithm. The algorithm utilizes k means clustering to divide the unlabeled samples into several clusters, labels them with the same class, makes transductive inference on the mixed data set composed by both labeled and unlabeled samples. As TSVMKMC algorithm reduces the size of the state space effectively, the running speed is improved largely. The experimental results show that the algorithm can achieve good classification accuracy with faster speed.
Keywords:transductive inference  support vector machine  k means clustering  unlabeled samples  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号