首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进PSO算法的任务分配研究
引用本文:曾文权,余爱民. 基于改进PSO算法的任务分配研究[J]. 计算机工程与应用, 2013, 49(13): 51-55
作者姓名:曾文权  余爱民
作者单位:广东科学技术职业学院 计算机工程学院,广东 珠海 519090
摘    要:为了解决虚拟企业中的任务分配问题,建立了任务分配的多目标决策优化模型。分析了传统的PSO算法,通过设置算法中速度惯性权重和加速度系数的自动调整,以及引入遗传算法中的变异操作,实现了对该算法的改进。基于改进的PSO算法求解任务分配模型,研究了求解问题与粒子的映射以及采用TOPSIS计算粒子位置适应度的方法,进而设计了一种基于改进PSO算法的任务分配算法。通过应用实例及仿真实验,证明了改进的PSO算法应用于任务分配的可行性和有效性。

关 键 词:虚拟企业  粒子群优化算法  任务分配  逼近理想解排序  

Research on improved PSO algorithm based task allocation
ZENG Wenquan,YU Aimin. Research on improved PSO algorithm based task allocation[J]. Computer Engineering and Applications, 2013, 49(13): 51-55
Authors:ZENG Wenquan  YU Aimin
Affiliation:School of Computer Engineering & Technology, Guangdong Institute of Science & Technology, Zhuhai, Guangdong 519090, China
Abstract:To solve the task allocation in virtual enterprise, a multi-object decision-making optimization model on task allocation is constructed. The traditional Particle Swarm Optimization(PSO) algorithm is analyzed. It is improved by automatically adjusting the weight of speed inertia and acceleration coefficient, and by introducing the mutation operation in genetic algorithm. In process of solving the task allocation model by the improved PSO algorithm, the mapping between problems and particles and the computing method of particle position fitness value by Technique for Order Preference by Similarity to Ideal Solution(TOPSIS) are researched. Then, a task allocation algorithm based on the improved PSO algorithm is designed. Finally, the feasibility and validity of the method is verified by an application example and a simulation test.
Keywords:virtual enterprise  Particle Swarm Optimization(PSO)  task allocation  Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号