首页 | 本学科首页   官方微博 | 高级检索  
     


Electrolyte-resistance change due to an insulating sphere in contact with a disk electrode
Authors:H Bouazaze  F Huet  P Rousseau
Affiliation:a Université Pierre et Marie Curie-Paris6, Laboratoire Interfaces et Systèmes Electrochimiques; CNRS, UPR15-LISE, 4 place Jussieu, case courrier 133, 75252 Paris Cedex 05, France
b Department of Metallurgy and Material Engineering, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
Abstract:This work is aimed at improving the quantitative analysis of the electrolyte-resistance (ER) fluctuations generated by two-phase systems with dispersed gaseous, liquid, or solid insulating entities in a conductive electrolyte. The primary potential distribution around a disk electrode in contact with a small insulating sphere, which simulates a spherical particle, drop, or gas bubble sitting on a disk electrode used as a sensor, was calculated with a collocation method in order to derive the increment in ER caused by the sphere. For a sphere of size equal to one-tenth of the electrode size, the values of the ER increments were found to be very low and to depend on the sphere position: 0.3% close to the edge of the electrode and 0.05% at its centre. Despite the influence of variations in the electrolyte temperature and of the approximate horizontality of the electrode, these low values could be measured experimentally by scanning insulating spheres of 1 and 2 mm in diameter above or in contact with a stainless steel electrode of 10 mm in diameter, using the motorized translation stage of a scanning electrochemical microscope and a home-made electronic device measuring low-amplitude ER fluctuations.
Keywords:Two-phase systems  Electrolyte-resistance fluctuations  Spherical particle  Primary current distribution  Collocation method
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号