首页 | 本学科首页   官方微博 | 高级检索  
     


Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode
Authors:Saeed Shahrokhian  Elham Asadian
Affiliation:a Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
b Institute for Nanoscience and Technology, Sharif University of Technology, Tehran, Iran
Abstract:A carbon paste electrode (CPE) modified with thionine immobilized on multi-walled carbon nanotube (MWCNT), was prepared for simultaneous determination of ascorbic acid (AA) and acetaminophen (AC) in the presence of isoniazid (INZ). The electrochemical response characteristics of the modified electrode toward AA, AC and INZ were investigated by cyclic and differential pulse voltammetry (CV and DPV). The results showed an efficient catalytic role for the electro-oxidation of AA and AC, leading to a remarkable peak resolution (∼303 mV) for two compounds. On the other hand, the presence of INZ, which is considered as important drug interference for AC, does not affect the voltammetric responses of these pharmaceuticals. The mechanism of the modified electrode was analyzed by monitoring the CVs at various potential sweep rates and pHs of the buffer solutions. Under the optimum conditions, the calibration curves for AA, AC and INZ were obtained in the range of 1 × 10−6 to 1 × 10−4 M, 1 × 10−7 to 1 × 10−4 M and 1 × 10−6 to 1 × 10−4 M, respectively. The prepared modified electrode shows several advantages such as simple preparation method, high sensitivity, long-time stability, ease of preparation and regeneration of the electrode surface by simple polishing and excellent reproducibility. The proposed method was applied to determination of AA, AC and INZ in commercial drugs and in plasma samples and the obtained results were satisfactory.
Keywords:Carbon paste modified electrode  Carbon nanotube  Thionine  Ascorbic acid  Acetaminophen  Isoniazid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号