首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的可燃毒物设计优化方法研究
引用本文:肖鹏,王健,刘仕倡,李满仓,周冰燕,王连杰,陈义学. 基于遗传算法的可燃毒物设计优化方法研究[J]. 原子能科学技术, 2021, 55(8): 1456-1463. DOI: 10.7538/yzk.2020.youxian.0563
作者姓名:肖鹏  王健  刘仕倡  李满仓  周冰燕  王连杰  陈义学
作者单位:中国核动力研究设计院 核反应堆系统设计技术重点实验室,四川 成都610213;华北电力大学 核科学与工程学院,北京102206
摘    要:可燃毒物可补偿寿期初过剩反应性及展平功率分布,因此对堆芯燃料组件设计具有重要意义。目前传统的优化设计主要依靠设计者的主观经验及判断,复杂耗时,其设计效率及可靠性急待改进。本文将多目标并行遗传算法应用于压水堆组件毒物选型优化,以反应性控制、功率分布和不同时期燃耗剩余等为目标,对可燃毒物材料类型、含可燃毒物燃料棒排列方式、毒物含量、轴向分层等决策变量进行优化,研究了遗传算法在燃料组件毒物多目标优化设计中的理论模型及实现方法。同时将遗传算法与蒙特卡罗粒子输运方法有机结合,应用到压水堆燃料组件设计中,得到了组件可燃毒物优化方案。针对二维和三维燃耗计算,分别筛选了13和40种优化方案。计算结果表明:Er2O3用作毒物的综合效果最好;Gd2O3、Eu2O3和Sm2O3的应用需结合堆芯方案开展进一步研究;HfO2和Dy2O3不适合用作可燃毒物。该结果与通过人工搜索优化得到的结论基本一致。同时,三维轴向分层可为优化提供更多可选的材料种类方案,以部分毒物的分层布置方式可减小功率峰因子。本文研究为堆芯燃料/毒物设计提供了先进方法及工具。

关 键 词:可燃毒物   多目标   遗传算法   蒙特卡罗

Optimization Method of Burnable Poison Design Based on Genetic Algorithm
XIAO Peng,WANG Jian,LIU Shichang,LI Mancang,ZHOU Bingyan,WANG Lianjie,CHEN Yixue. Optimization Method of Burnable Poison Design Based on Genetic Algorithm[J]. Atomic Energy Science and Technology, 2021, 55(8): 1456-1463. DOI: 10.7538/yzk.2020.youxian.0563
Authors:XIAO Peng  WANG Jian  LIU Shichang  LI Mancang  ZHOU Bingyan  WANG Lianjie  CHEN Yixue
Affiliation:Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China; School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
Abstract:The design of burnable poisons (BPs) can compensate for excess reactivity at the beginning of lifetime of nuclear reactors and flatten power distribution, which is especially important for nuclear reactors assembly design. At present, the traditional optimization design mainly relies on the subjective experience and judgment of designers, which is complicated and time consuming. Therefore, the efficiency and reliability of BPs design urgently need to be improved. In this paper, the multi objective parallel genetic algorithm (GA) was applied to the selection and optimization of the components of pressurized water reactor (PWR). Taking the reactivity control, power distribution and poisons residues in different periods as the objectives, the decision variables such as the type of BPs materials, the layout of fuel rods containing BPs materials, the purity of BPs and the axial division were optimized. Then optimization program was developed by combining multi objective parallel GA with Monte Carlo particle transport code RMC as the neutronics and depletion solver. 13 and 40 optimization schemes were selected for two and three dimensional burnup calculation. The results show that the comprehensive effect of Er2O3 as BP is the best. The application of Gd2O3, Eu2O3 and Sm2O3 should be further studied in combination with the core scheme. HfO2 and Dy2O3 are not suitable for using as BPs. The results are basically consistent with the results obtained by manual search optimization. At the same time, three dimensional axial division can provide more alternative material types for optimization, and power peaking factor can be reduced by layering some BPs. This paper provides useful methods and tools for BPs design of nuclear reactors.
Keywords:burnable poison   multi-objective   genetic algorithm   Monte Carlo
本文献已被 CNKI 等数据库收录!
点击此处可从《原子能科学技术》浏览原始摘要信息
点击此处可从《原子能科学技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号