首页 | 本学科首页   官方微博 | 高级检索  
     


The Design of a Coprime‐Factorized Predictive Functional Controller for Unstable Fractional Order Systems
Authors:Mahsa Sanatizadeh  Nooshin Bigdeli
Abstract:In this paper, a new approach, called coprime‐factorized predictive functional control method (CFPFC‐F) is proposed to control unstable fractional order linear time invariant systems. To design the controller, first, a prediction model should be synthesized. For this purpose, coprime‐factorized representation is extended for unstable fractional order systems via a reduced approximated model of unstable fractional order (FO) system. That is, an approximated integer model of fractional order system is derived via the well‐known Oustaloup method. Then, the high order approximated model is reduced to a lower one via a balanced truncation model order reduction method. Next, the equivalent coprime‐factorized model of the unstable fractional‐order plant is employed to predict the output of the system. Then, a predictive functional controller (PFC) is designed to control the unstable plant. Finally, the robust stability of the closed‐loop system is analyzed via small gain theorem. The performance of the proposed control is investigated via simulations for the control of an unstable non‐laminated electromagnetic suspension system as our simulation test system.
Keywords:Unstable fractional order (FO) system  predictive functional control  coprime‐factorization  robust stability  Linear Matrix Inequality (LMI)  non‐laminated electromagnetic suspension system
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号