首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking.
Authors:Curtis S To  Robert F Kirsch  Rudi Kobetic  Ronald J Triolo
Affiliation:Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. cst@po.cwru.edu
Abstract:The purpose of this study was to examine a hybrid orthosis system (HOS) for walking after spinal-cord injury (SCI) that coordinates the mechanical locking and unlocking of knee and ankle joints of a reciprocating gait orthosis (RGO), while propulsive forces are injected and unlocked joints controlled with functional neuromuscular stimulation (FNS). The likely effectiveness of the HOS in terms of forward progression, stability, and posture of paraplegic gait was determined in this simulation study. A three-dimensional computer model of a HOS combining FNS with an RGO incorporating feedback control of muscle activation and joint locking was developed. An anthropomorphic human model included passive joint moments and a foot-ground contact model adapted from other studies. A model of the RGO reciprocally coupled the hips and locked and unlocked the knee and ankle joints during stance and swing respectively. The actions of muscles under FNS activation were modeled via closed-loop control of joint torque inputs. A walking aid that mimicked canes and voluntary upper extremity actions maintained lateral stability by providing the necessary shoulder forces and moments. The simulated HOS achieved gait speeds of 0.51 +/- 0.03 m/s, stride lengths of 0.85 +/- 0.04 m, and cadences of 72 +/- 4 steps/min, exceeding the reported performance of other assistive gait systems. Although minimal forward trunk tilt was found to be necessary during specific phases of gait, posture, and stability were significantly improved over FNS-only systems.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号